IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v55y2016icp272-283.html
   My bibliography  Save this article

Cost efficiency of electric grid utilities in China: A comparison of estimates from SFA–MLE, SFA–Bayes and StoNED–CNLS

Author

Listed:
  • Li, Hong-Zhou
  • Kopsakangas-Savolainen, Maria
  • Xiao, Xing-Zhi
  • Tian, Zhen-Zhen
  • Yang, Xiao-Yuan
  • Wang, Jian-Lin

Abstract

With the purpose of estimating the range of cost efficiency levels of the power grid sector in China, we assembled a data set including 23 provincial power grid companies spanning from 2005 to 2009 and conducted an empirical study based on the SFA–MLE, SFA–Bayes and StoNED–CNLS methodologies. Empirical results show that the average values of efficiency from different models vary from 0.85 to 0.92, depending especially on the assumptions underlying inefficiency content. Further, results demonstrate that there is exogenous technical progress during the sample period, and per capita GDP of the province is negatively related to the costs of the electric grid company located in the corresponding province. We hope this empirical study will contribute to the debate on an efficiency-based regulation scheme which was introduced to the Chinese electric grid sector on a pilot base in 2014.

Suggested Citation

  • Li, Hong-Zhou & Kopsakangas-Savolainen, Maria & Xiao, Xing-Zhi & Tian, Zhen-Zhen & Yang, Xiao-Yuan & Wang, Jian-Lin, 2016. "Cost efficiency of electric grid utilities in China: A comparison of estimates from SFA–MLE, SFA–Bayes and StoNED–CNLS," Energy Economics, Elsevier, vol. 55(C), pages 272-283.
  • Handle: RePEc:eee:eneeco:v:55:y:2016:i:c:p:272-283
    DOI: 10.1016/j.eneco.2016.02.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988316300251
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fare, Rolf & Grosskopf, Shawna & Lovell, C A Knox, 1983. " The Structure of Technical Efficiency," Scandinavian Journal of Economics, Wiley Blackwell, vol. 85(2), pages 181-190.
    2. Kopsakangas-Savolainen, Maria & Svento, Rauli, 2011. "Observed and unobserved heterogeneity in stochastic frontier models: An application to the electricity distribution industry," Energy Economics, Elsevier, vol. 33(2), pages 304-310, March.
    3. Efthymios G. Tsionas, 2002. "Stochastic frontier models with random coefficients," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(2), pages 127-147.
    4. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    5. R. G. Evans, 1971. "'Behavioural' Cost Functions for Hospitals," Canadian Journal of Economics, Canadian Economics Association, vol. 4(2), pages 198-215, May.
    6. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    7. Ann F. Friedlaender & Clifford Winston & Kung Wang, 1983. "Costs, Technology, and Productivity in the U.S. Automobile Industry," Bell Journal of Economics, The RAND Corporation, vol. 14(1), pages 1-20, Spring.
    8. Jim Griffin & Mark Steel, 2007. "Bayesian stochastic frontier analysis using WinBUGS," Journal of Productivity Analysis, Springer, vol. 27(3), pages 163-176, June.
    9. Massimo Filippini & Nevenka Hrovatin & Jelena Zorić, 2008. "Cost efficiency of Slovenian water distribution utilities: an application of stochastic frontier methods," Journal of Productivity Analysis, Springer, vol. 29(2), pages 169-182, April.
    10. Subal Kumbhakar & Gudbrand Lien & J. Hardaker, 2014. "Technical efficiency in competing panel data models: a study of Norwegian grain farming," Journal of Productivity Analysis, Springer, vol. 41(2), pages 321-337, April.
    11. Schmidt, Peter & Sickles, Robin C, 1984. "Production Frontiers and Panel Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(4), pages 367-374, October.
    12. van den Broeck, Julien & Koop, Gary & Osiewalski, Jacek & Steel, Mark F. J., 1994. "Stochastic frontier models : A Bayesian perspective," Journal of Econometrics, Elsevier, vol. 61(2), pages 273-303, April.
    13. Mark Andor & Frederik Hesse, 2014. "The StoNED age: the departure into a new era of efficiency analysis? A monte carlo comparison of StoNED and the “oldies” (SFA and DEA)," Journal of Productivity Analysis, Springer, vol. 41(1), pages 85-109, February.
    14. Mehdi Farsi & Massimo Filippini & William Greene, 2006. "Application Of Panel Data Models In Benchmarking Analysis Of The Electricity Distribution Sector ," Annals of Public and Cooperative Economics, Wiley Blackwell, vol. 77(3), pages 271-290, September.
    15. Charnes, A. & Cooper, W. W. & Seiford, L. & Stutz, J., 1982. "A multiplicative model for efficiency analysis," Socio-Economic Planning Sciences, Elsevier, vol. 16(5), pages 223-224.
    16. Farsi, Mehdi & Filippini, Massimo & Kuenzle, Michael, 2007. "Cost efficiency in the Swiss gas distribution sector," Energy Economics, Elsevier, vol. 29(1), pages 64-78, January.
    17. Battese, G E & Coelli, T J, 1995. "A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data," Empirical Economics, Springer, vol. 20(2), pages 325-332.
    18. Eskelinen, Juha & Kuosmanen, Timo, 2013. "Intertemporal efficiency analysis of sales teams of a bank: Stochastic semi-nonparametric approach," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5163-5175.
    19. Farsi, Mehdi & Filippini, Massimo, 2009. "An analysis of cost efficiency in Swiss multi-utilities," Energy Economics, Elsevier, vol. 31(2), pages 306-315, March.
    20. Greene, William, 2005. "Reconsidering heterogeneity in panel data estimators of the stochastic frontier model," Journal of Econometrics, Elsevier, vol. 126(2), pages 269-303, June.
    21. Breyer, Friedrich, 1987. "The specification of a hospital cost function : A comment on the recent literature," Journal of Health Economics, Elsevier, vol. 6(2), pages 147-157, June.
    22. Chen, Zhongfei & Barros, Carlos Pestana & Borges, Maria Rosa, 2015. "A Bayesian stochastic frontier analysis of Chinese fossil-fuel electricity generation companies," Energy Economics, Elsevier, vol. 48(C), pages 136-144.
    23. Willam Greene, 2005. "Fixed and Random Effects in Stochastic Frontier Models," Journal of Productivity Analysis, Springer, vol. 23(1), pages 7-32, January.
    24. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    25. Kumbhakar, Subal C., 1990. "Production frontiers, panel data, and time-varying technical inefficiency," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 201-211.
    26. Timo Kuosmanen, 2008. "Representation theorem for convex nonparametric least squares," Econometrics Journal, Royal Economic Society, vol. 11(2), pages 308-325, July.
    27. Fernandez, Carmen & Osiewalski, Jacek & Steel, Mark F. J., 1997. "On the use of panel data in stochastic frontier models with improper priors," Journal of Econometrics, Elsevier, vol. 79(1), pages 169-193, July.
    28. Pitt, Mark M. & Lee, Lung-Fei, 1981. "The measurement and sources of technical inefficiency in the Indonesian weaving industry," Journal of Development Economics, Elsevier, vol. 9(1), pages 43-64, August.
    29. Kopsakangas-Savolainen, Maria & Svento, Rauli, 2008. "Estimation of cost-effectiveness of the Finnish electricity distribution utilities," Energy Economics, Elsevier, vol. 30(2), pages 212-229, March.
    30. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    31. Cornwell, Christopher & Schmidt, Peter & Sickles, Robin C., 1990. "Production frontiers with cross-sectional and time-series variation in efficiency levels," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 185-200.
    32. P. Byrnes & R. Färe & S. Grosskopf, 1984. "Measuring Productive Efficiency: An Application to Illinois Strip Mines," Management Science, INFORMS, vol. 30(6), pages 671-681, June.
    33. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    34. Timo Kuosmanen & Mika Kortelainen, 2012. "Stochastic non-smooth envelopment of data: semi-parametric frontier estimation subject to shape constraints," Journal of Productivity Analysis, Springer, vol. 38(1), pages 11-28, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saastamoinen, Antti & Bjørndal, Endre & Bjørndal, Mette, 2017. "Specification of merger gains in the Norwegian electricity distribution industry," Energy Policy, Elsevier, vol. 102(C), pages 96-107.
    2. repec:gam:jsusta:v:9:y:2017:i:4:p:646-:d:96217 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:55:y:2016:i:c:p:272-283. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/eneco .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.