IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/31081.html
   My bibliography  Save this paper

Estimating fixed-effect panel stochastic frontier models by model transformation

Author

Listed:
  • Wang, Hung-Jen
  • Ho, Chia-Wen

Abstract

Traditional panel stochastic frontier models do not distinguish between unobserved individual heterogeneity and inefficiency. They thus force all time-invariant individual heterogeneity into the estimated inefficiency. Greene (2005) proposes a true fixed-effect stochastic frontier model which, in theory, may be biased by the incidental parameters problem. The problem usually cannot be dealt with by model transformations owing to the nonlinearity of the stochastic frontier model. In this paper, we propose a class of panel stochastic frontier models which create an exception. We show that first-difference and within-transformation can be analytically performed on this model to remove the fixed individual effects, and thus the estimator is immune to the incidental parameters problem. Consistency of the estimator is obtained by either N→∞ or T→∞, which is an attractive property for empirical researchers

Suggested Citation

  • Wang, Hung-Jen & Ho, Chia-Wen, 2009. "Estimating fixed-effect panel stochastic frontier models by model transformation," MPRA Paper 31081, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:31081
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/31081/1/MPRA_paper_31081.pdf
    File Function: original version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Chirinko, Robert S, 1993. "Business Fixed Investment Spending: Modeling Strategies, Empirical Results, and Policy Implications," Journal of Economic Literature, American Economic Association, vol. 31(4), pages 1875-1911, December.
    2. Mark Gertler & Simon Gilchrist, 1994. "Monetary Policy, Business Cycles, and the Behavior of Small Manufacturing Firms," The Quarterly Journal of Economics, Oxford University Press, vol. 109(2), pages 309-340.
    3. Gilchrist, Simon & Himmelberg, Charles P., 1995. "Evidence on the role of cash flow for investment," Journal of Monetary Economics, Elsevier, vol. 36(3), pages 541-572, December.
    4. Robert S. Chirinko, 1992. "Business Fixed Investment Spending: A Critical survey of Modeling Strategies, Empirical Results, and Policy Implications," Working Papers 9213, Harris School of Public Policy Studies, University of Chicago.
    5. Hayashi, Fumio, 1985. "Corporate finance side of the Q theory of investment," Journal of Public Economics, Elsevier, vol. 27(3), pages 261-280, August.
    6. Schmidt, Peter & Sickles, Robin C, 1984. "Production Frontiers and Panel Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(4), pages 367-374, October.
    7. Caudill, Steven B. & Ford, Jon M., 1993. "Biases in frontier estimation due to heteroscedasticity," Economics Letters, Elsevier, vol. 41(1), pages 17-20.
    8. Nan-Kuang Chen & Hung-Jen Wang, 2008. "Identifying the Demand and Supply Effects of Financial Crises on Bank Credit—Evidence from Taiwan," Southern Economic Journal, Southern Economic Association, vol. 75(1), pages 26-49, July.
    9. Willam Greene, 2005. "Fixed and Random Effects in Stochastic Frontier Models," Journal of Productivity Analysis, Springer, vol. 23(1), pages 7-32, January.
    10. Robert E. Carpenter & Steven M. Fazzari & Bruce C. Petersen, 1994. "Inventory (Dis)Investment, Internal Finance Fluctuations, and the Business Cycle," Macroeconomics 9401001, EconWPA.
    11. Antonio Alvarez & Christine Amsler & Luis Orea & Peter Schmidt, 2006. "Interpreting and Testing the Scaling Property in Models where Inefficiency Depends on Firm Characteristics," Journal of Productivity Analysis, Springer, vol. 25(3), pages 201-212, June.
    12. Reifschneider, David & Stevenson, Rodney, 1991. "Systematic Departures from the Frontier: A Framework for the Analysis of Firm Inefficiency," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 32(3), pages 715-723, August.
    13. Steven M. Fazzari & R. Glenn Hubbard & Bruce C. Petersen, 2000. "Investment-Cash Flow Sensitivities are Useful: A Comment on Kaplan and Zingales," The Quarterly Journal of Economics, Oxford University Press, vol. 115(2), pages 695-705.
    14. Wang, Hung-Jen, 2003. "A Stochastic Frontier Analysis of Financing Constraints on Investment: The Case of Financial Liberalization in Taiwan," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(3), pages 406-419, July.
    15. Steven N. Kaplan & Luigi Zingales, 2000. "Investment-Cash Flow Sensitivities Are Not Valid Measures of Financing Constraints," The Quarterly Journal of Economics, Oxford University Press, vol. 115(2), pages 707-712.
    16. Robert E. Carpenter & Steven M. Fazzari & Bruce C. Petersen, 1994. "Inventory Investment, Internal-Finance Fluctuation, and the Business Cycle," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 25(2), pages 75-138.
    17. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    18. Caudill, Steven B & Ford, Jon M & Gropper, Daniel M, 1995. "Frontier Estimation and Firm-Specific Inefficiency Measures in the Presence of Heteroscedasticity," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 105-111, January.
    19. Kumbhakar, Subal C., 1990. "Production frontiers, panel data, and time-varying technical inefficiency," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 201-211.
    20. Hung-jen Wang & Peter Schmidt, 2002. "One-Step and Two-Step Estimation of the Effects of Exogenous Variables on Technical Efficiency Levels," Journal of Productivity Analysis, Springer, vol. 18(2), pages 129-144, September.
    21. Battese, George E., 1992. "Frontier production functions and technical efficiency: a survey of empirical applications in agricultural economics," Agricultural Economics, Blackwell, vol. 7(3-4), pages 185-208, October.
    22. Cornwell, Christopher & Schmidt, Peter, 1992. "Models for Which the MLE and the Conditional MLE Coincide," Empirical Economics, Springer, vol. 17(1), pages 67-75.
    23. Greene, William, 2005. "Reconsidering heterogeneity in panel data estimators of the stochastic frontier model," Journal of Econometrics, Elsevier, vol. 126(2), pages 269-303, June.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Stochastic frontier models; Fixed effects; Panel data;

    JEL classification:

    • C16 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Econometric and Statistical Methods; Specific Distributions
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:31081. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter) or (Rebekah McClure). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.