IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Bayesian Stochastic Frontier Analysis Using WinBUGS

  • Jim Griffin

    (University of Warwick)

  • Mark Steel

    (University of Warwick)

Markov chain Monte Carlo (MCMC) methods have become a ubiquitous tool in Bayesian analysis. This paper implements MCMC methods for Bayesian analysis of stochastic frontier models using the WinBUGS package, a freely available software. General code for cross-sectional and panel data are presented and various ways of summarizing posterior inference are discussed. Several examples illustrate that analyses with models of genuine practical interest can be performed straightforwardly and model changes are easily implemented.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by EconWPA in its series Econometrics with number 0509004.

in new window

Length: 19 pages
Date of creation: 04 Sep 2005
Date of revision:
Handle: RePEc:wpa:wuwpem:0509004
Note: Type of Document - pdf; pages: 19
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Tsionas, E.G., 2001. "Stochastic Frontier Models with Random Coefficients," Athens University of Economics and Business 130, Athens University of Economics and Business, Department of International and European Economic Studies.
  2. Koop, G. & Osiewalski, J. & Steel, M. F. J., . "Bayesian efficiency analysis through individual effects: Hospital cost frontiers," CORE Discussion Papers RP 1245, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  3. Kumbhakar, Subal C. & Tsionas, Efthymios G., 2005. "Measuring technical and allocative inefficiency in the translog cost system: a Bayesian approach," Journal of Econometrics, Elsevier, vol. 126(2), pages 355-384, June.
  4. Carmen Fernandez & Gary Koop & Mark F.J. Steel, 2002. "Multiple-Output Production With Undesirable Outputs: An Application to Nitrogen Surplus in Agriculture," Econometrics 0201001, EconWPA, revised 06 Jan 2002.
  5. Stevenson, Rodney E., 1980. "Likelihood functions for generalized stochastic frontier estimation," Journal of Econometrics, Elsevier, vol. 13(1), pages 57-66, May.
  6. Ho-chuan Huang, 2004. "Estimation of Technical Inefficiencies with Heterogeneous Technologies," Journal of Productivity Analysis, Springer, vol. 21(3), pages 277-296, May.
  7. Jim E. Griffin & Mark F.J. Steel, 2002. "Semiparametric Bayesian Inference for Stochastic Frontier Models," Econometrics 0209001, EconWPA, revised 18 Sep 2002.
  8. Efthymios Tsionas, 2000. "Full Likelihood Inference in Normal-Gamma Stochastic Frontier Models," Journal of Productivity Analysis, Springer, vol. 13(3), pages 183-205, May.
  9. Terrell, Dek, 1996. "Incorporating Monotonicity and Concavity Conditions in Flexible Functional Forms," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(2), pages 179-94, March-Apr.
  10. KOOP, Gary & STEEL, Mark F. & OSIEWALSKI, Jacek, 1994. "Posterior Analysis of Stochastic Frontier Models using Gibbs Sampling," CORE Discussion Papers 1994061, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  11. J. Griffin & M. Steel, 2008. "Flexible mixture modelling of stochastic frontiers," Journal of Productivity Analysis, Springer, vol. 29(1), pages 33-50, February.
  12. Karl C. Ennsfellner & Danielle Lewis & Randy I. Anderson, 2004. "Production Efficiency in the Austrian Insurance Industry: A Bayesian Examination," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 71(1), pages 135-159.
  13. Lyubov A. Kurkalova & Alicia Carriquiry, 2002. "An Analysis of Grain Production Decline During the Early Transition in Ukraine: A Bayesian Inference," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 84(5), pages 1256-1263.
  14. Christensen, Laurits R & Greene, William H, 1976. "Economies of Scale in U.S. Electric Power Generation," Journal of Political Economy, University of Chicago Press, vol. 84(4), pages 655-76, August.
  15. Dorfman, Jeffrey H. & Koop, Gary, 2005. "Current developments in productivity and efficiency measurement," Journal of Econometrics, Elsevier, vol. 126(2), pages 233-240, June.
  16. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-44, June.
  17. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
  18. Greene, William H., 1990. "A Gamma-distributed stochastic frontier model," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 141-163.
  19. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika van der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpem:0509004. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.