IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Unobserved heterogeneous effects in the cost efficiency analysis of electricity distribution systems

  • Per J. Agrell
  • Mehdi Farsi
  • Massimo Filippini
  • Martin Koller

The purpose of this study is to analyze the cost efficiency of electricity distribution systems in order to enable regulatory authorities to establish price- or revenue cap regulation regimes. The increasing use of efficiency analysis in the last decades has raised serious concerns among regulators and companies regarding the reliability of efficiency estimates. One important dimension affecting the reliability is the presence of unobserved factors. Since these factors are treated differently in various models, the resulting estimates can vary across methods. Therefore, we decompose the benchmarking process into two steps. In the first step, we identify classes of similar companies with comparable network and structural characteristics using a latent class cost model. We obtain cost best practice within each class in the second step, based on deterministic and stochastic cost frontier models. The results of this analysis show that the decomposition of the benchmarking process into two steps has reduced unobserved heterogeneity within classes and, hence, reduced the unexplained variance previously claimed as inefficiency.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.swiss-economics.ch/RePEc/files/0038AgrellFarsiFilippiniKoller.pdf
Download Restriction: no

Paper provided by Swiss Economics in its series Working Papers with number 0038.

as
in new window

Length:
Date of creation: Jan 2013
Date of revision:
Handle: RePEc:chc:wpaper:0038
Contact details of provider: Web page: http://www.swiss-economics.chEmail:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Kris Knox & Eric Blankmeyer & J. Stutzman, 2007. "Technical efficiency in texas nursing facilities: A stochastic production frontier approach," Journal of Economics and Finance, Springer, vol. 31(1), pages 75-86, March.
  2. Estache, Antonio & Rossi, Martin A. & Ruzzier, Christian A., 2002. "The case for international coordination of electricity regulation : evidence from the measurement of efficiency in South America," Policy Research Working Paper Series 2907, The World Bank.
  3. Mehdi Farsi & Massimo Filippini & William Greene, 2006. "Application Of Panel Data Models In Benchmarking Analysis Of The Electricity Distribution Sector ," Annals of Public and Cooperative Economics, Wiley Blackwell, vol. 77(3), pages 271-290, 09.
  4. Cornwell, Christopher & Schmidt, Peter & Sickles, Robin C., 1990. "Production frontiers with cross-sectional and time-series variation in efficiency levels," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 185-200.
  5. Behr, Andreas, 2010. "Quantile regression for robust bank efficiency score estimation," European Journal of Operational Research, Elsevier, vol. 200(2), pages 568-581, January.
  6. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
  7. Andrew Street, 2003. "How much confidence should we place in efficiency estimates?," Health Economics, John Wiley & Sons, Ltd., vol. 12(11), pages 895-907.
  8. Battese, George E. & Coelli, Tim J., 1988. "Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data," Journal of Econometrics, Elsevier, vol. 38(3), pages 387-399, July.
  9. Afriat, Sidney N, 1972. "Efficiency Estimation of Production Function," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 13(3), pages 568-98, October.
  10. Pitt, Mark M. & Lee, Lung-Fei, 1981. "The measurement and sources of technical inefficiency in the Indonesian weaving industry," Journal of Development Economics, Elsevier, vol. 9(1), pages 43-64, August.
  11. Jamasb, Tooraj & Pollitt, Michael, 2003. "International benchmarking and regulation: an application to European electricity distribution utilities," Energy Policy, Elsevier, vol. 31(15), pages 1609-1622, December.
  12. repec:cup:cbooks:9780521715348 is not listed on IDEAS
  13. Schmidt, Peter & Sickles, Robin C, 1984. "Production Frontiers and Panel Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(4), pages 367-74, October.
  14. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
  15. repec:cup:cbooks:9780521887427 is not listed on IDEAS
  16. Kumbhakar, Subal C., 1990. "Production frontiers, panel data, and time-varying technical inefficiency," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 201-211.
  17. Luis R. Murillo-Zamorano, 2004. "Economic Efficiency and Frontier Techniques," Journal of Economic Surveys, Wiley Blackwell, vol. 18(1), pages 33-77, 02.
  18. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-44, June.
  19. Mehdi Farsi & Massimo Filippini, 2003. "Regulation and Measuring Cost Efficiency with Panel Data Models: Application to Electricity Distribution Utilities," CEPE Working paper series 03-19, CEPE Center for Energy Policy and Economics, ETH Zurich.
  20. AGRELL, Per J. & BOGETOFT, Peter, . "Harmonizing the Nordic regulation of electricity distribution," CORE Discussion Papers RP -2376, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  21. Haney, Aoife Brophy & Pollitt, Michael G., 2009. "Efficiency analysis of energy networks: An international survey of regulators," Energy Policy, Elsevier, vol. 37(12), pages 5814-5830, December.
  22. Andrei Shleifer, 1985. "A Theory of Yardstick Competition," RAND Journal of Economics, The RAND Corporation, vol. 16(3), pages 319-327, Autumn.
  23. repec:ulb:ulbeco:2013/13372 is not listed on IDEAS
  24. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
  25. Shuttleworth, Graham, 2005. "Benchmarking of electricity networks: Practical problems with its use for regulation," Utilities Policy, Elsevier, vol. 13(4), pages 310-317, December.
  26. Kumbhakar, Subal C., 1991. "Estimation of technical inefficiency in panel data models with firm- and time-specific effects," Economics Letters, Elsevier, vol. 36(1), pages 43-48, May.
  27. Kalirajan, K P & Obwona, M B, 1994. "Frontier Production Function: The Stochastic Coefficients Approach," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 56(1), pages 87-96, February.
  28. van den Broeck, Julien & Koop, Gary & Osiewalski, Jacek & Steel, Mark F. J., 1994. "Stochastic frontier models : A Bayesian perspective," Journal of Econometrics, Elsevier, vol. 61(2), pages 273-303, April.
  29. Uwe Jensen, 2000. "Is it efficient to analyse efficiency rankings?," Empirical Economics, Springer, vol. 25(2), pages 189-208.
  30. Polachek, Solomon W & Yoon, Bong Joon, 1996. "Panel Estimates of a Two-Tiered Earnings Frontier," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(2), pages 169-78, March-Apr.
  31. Chamberlain, Gary, 1982. "Multivariate regression models for panel data," Journal of Econometrics, Elsevier, vol. 18(1), pages 5-46, January.
  32. Greene, William, 2005. "Reconsidering heterogeneity in panel data estimators of the stochastic frontier model," Journal of Econometrics, Elsevier, vol. 126(2), pages 269-303, June.
  33. Astrid Cullmann, 2012. "Benchmarking and firm heterogeneity: a latent class analysis for German electricity distribution companies," Empirical Economics, Springer, vol. 42(1), pages 147-169, February.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:chc:wpaper:0038. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christian Jaag)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.