IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v108y2017icp606-616.html
   My bibliography  Save this article

Have regulatory reforms improved the efficiency levels of the Japanese electricity distribution sector? A cost metafrontier-based analysis

Author

Listed:
  • Li, Hong-Zhou
  • Kopsakangas-Savolainen, Maria
  • Xiao, Xing-Zhi
  • Lau, Sim-Yee

Abstract

In order to identify the kinds of impacts that Japanese regulatory reforms in the electric power industry have had on the efficiency levels of the electrical distribution sector, the present study assembles a dataset which spans both pre- and post-regulation periods. Further, to make the estimated efficiency scores from the two sub-periods comparable, the study applies metafrontier frameworks proposed by O’Donnell et al. (2008) and Huang et al. (2014) to the cost function in the longitudinal setting. Estimates from both methods show that the average efficiency score of the electrical distribution sector during the whole sample period is relatively low. Further, findings also demonstrate that the efficiency levels after the regulatory reforms are lower than those before the regulatory reforms. To this surprising and unexpected phenomenon, we argue that cross-subsidization may be one reason for this kind of changing pattern in efficiency levels. In order to deal with the relatively low efficiency problem, we also suggest that Japanese regulators should introduce more incentive-based regulatory tools to replace the current rate-of-return regulation.

Suggested Citation

  • Li, Hong-Zhou & Kopsakangas-Savolainen, Maria & Xiao, Xing-Zhi & Lau, Sim-Yee, 2017. "Have regulatory reforms improved the efficiency levels of the Japanese electricity distribution sector? A cost metafrontier-based analysis," Energy Policy, Elsevier, vol. 108(C), pages 606-616.
  • Handle: RePEc:eee:enepol:v:108:y:2017:i:c:p:606-616
    DOI: 10.1016/j.enpol.2017.06.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421517303865
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2017.06.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Goto, Mika & Inoue, Tomohiro & Sueyoshi, Toshiyuki, 2013. "Structural reform of Japanese electric power industry: Separation between generation and transmission & distribution," Energy Policy, Elsevier, vol. 56(C), pages 186-200.
    2. Miyuki Taniguchi, 2013. "The Impact of Liberalization on the Production of Electricity in Japan," Keio/Kyoto Joint Global COE Discussion Paper Series 2012-027, Keio/Kyoto Joint Global COE Program.
    3. Massimo Filippini & William Greene, 2016. "Persistent and transient productive inefficiency: a maximum simulated likelihood approach," Journal of Productivity Analysis, Springer, vol. 45(2), pages 187-196, April.
    4. Huang, Yi-Ju & Chen, Ku-Hsieh & Yang, Chih-Hai, 2010. "Cost efficiency and optimal scale of electricity distribution firms in Taiwan: An application of metafrontier analysis," Energy Economics, Elsevier, vol. 32(1), pages 15-23, January.
    5. Yujiro Hayami, 1969. "Sources of Agricultural Productivity Gap Among Selected Countries," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 51(3), pages 564-575.
    6. Takanori Ida & Eiichi Ito & Shin Kinoshita, 2007. "Post-regulatory reform productivity gains in Japan's electricity industry," Applied Economics Letters, Taylor & Francis Journals, vol. 14(13), pages 975-979.
    7. Kopsakangas-Savolainen, Maria & Svento, Rauli, 2011. "Observed and unobserved heterogeneity in stochastic frontier models: An application to the electricity distribution industry," Energy Economics, Elsevier, vol. 33(2), pages 304-310, March.
    8. Sueyoshi, Toshiyuki & Goto, Mika, 2001. "Slack-adjusted DEA for time series analysis: Performance measurement of Japanese electric power generation industry in 1984-1993," European Journal of Operational Research, Elsevier, vol. 133(2), pages 232-259, January.
    9. Giannakis, Dimitrios & Jamasb, Tooraj & Pollitt, Michael, 2005. "Benchmarking and incentive regulation of quality of service: an application to the UK electricity distribution networks," Energy Policy, Elsevier, vol. 33(17), pages 2256-2271, November.
    10. Cliff Huang & Tai-Hsin Huang & Nan-Hung Liu, 2014. "A new approach to estimating the metafrontier production function based on a stochastic frontier framework," Journal of Productivity Analysis, Springer, vol. 42(3), pages 241-254, December.
    11. Toru Hattori & Tooraj Jamasb & Michael Pollitt, 2005. "Electricity Distribution in the UK and Japan: A Comparative Efficiency Analysis 1985-1998," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 23-48.
    12. Goto, Mika & Sueyoshi, Toshiyuki, 2009. "Productivity growth and deregulation of Japanese electricity distribution," Energy Policy, Elsevier, vol. 37(8), pages 3130-3138, August.
    13. Roberto Colombi & Gianmaria Martini & Giorgio Vittadini, 2011. "A Stochastic Frontier Model with short-run and long-run inefficiency random effects," Working Papers 1101, Department of Management, Information and Production Engineering, University of Bergamo.
    14. Toru Hattori, 2002. "Relative Performance of U.S. and Japanese Electricity Distribution: An Application of Stochastic Frontier Analysis," Journal of Productivity Analysis, Springer, vol. 18(3), pages 269-284, November.
    15. Per J. Agrell & Mehdi Farsi & Massimo Filippini & Martin Koller, 2013. "Unobserved heterogeneous effects in the cost efficiency analysis of electricity distribution systems," CER-ETH Economics working paper series 13/171, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    16. Mehdi Farsi & Massimo Filippini & Michael Kuenzle, 2006. "Cost Efficiency in Regional Bus Companies: An Application of Alternative Stochastic Frontier Models," Journal of Transport Economics and Policy, University of Bath, vol. 40(1), pages 95-118, January.
    17. Tim Coelli & Sergio Perelman & Elliot Romano, 1999. "Accounting for Environmental Influences in Stochastic Frontier Models: With Application to International Airlines," Journal of Productivity Analysis, Springer, vol. 11(3), pages 251-273, June.
    18. Mark Armstrong & Simon Cowan & John Vickers, 1994. "Regulatory Reform: Economic Analysis and British Experience," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262510790, December.
    19. Hayami, Yujiro & Ruttan, Vernon W, 1970. "Agricultural Productivity Differences Among Countries," American Economic Review, American Economic Association, vol. 60(5), pages 895-911, December.
    20. Ann F. Friedlaender & Clifford Winston & Kung Wang, 1983. "Costs, Technology, and Productivity in the U.S. Automobile Industry," Bell Journal of Economics, The RAND Corporation, vol. 14(1), pages 1-20, Spring.
    21. Christopher O’Donnell & D. Rao & George Battese, 2008. "Metafrontier frameworks for the study of firm-level efficiencies and technology ratios," Empirical Economics, Springer, vol. 34(2), pages 231-255, March.
    22. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    23. Kumbhakar, Subal C & Hjalmarsson, Lennart, 1995. "Labour-Use Efficiency in Swedish Social Insurance Offices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(1), pages 33-47, Jan.-Marc.
    24. Pollitt, Michael, 2005. "The role of efficiency estimates in regulatory price reviews: Ofgem's approach to benchmarking electricity networks," Utilities Policy, Elsevier, vol. 13(4), pages 279-288, December.
    25. Li, Hong-Zhou & Tian, Xian-Liang & Zou, Tao, 2015. "Impact analysis of coal-electricity pricing linkage scheme in China based on stochastic frontier cost function," Applied Energy, Elsevier, vol. 151(C), pages 296-305.
    26. Nakano, Makiko & Managi, Shunsuke, 2008. "Regulatory reforms and productivity: An empirical analysis of the Japanese electricity industry," Energy Policy, Elsevier, vol. 36(1), pages 201-209, January.
    27. Subal Kumbhakar & Gudbrand Lien & J. Hardaker, 2014. "Technical efficiency in competing panel data models: a study of Norwegian grain farming," Journal of Productivity Analysis, Springer, vol. 41(2), pages 321-337, April.
    28. George Battese & D. Rao & Christopher O'Donnell, 2004. "A Metafrontier Production Function for Estimation of Technical Efficiencies and Technology Gaps for Firms Operating Under Different Technologies," Journal of Productivity Analysis, Springer, vol. 21(1), pages 91-103, January.
    29. Farsi, Mehdi & Filippini, Massimo, 2009. "An analysis of cost efficiency in Swiss multi-utilities," Energy Economics, Elsevier, vol. 31(2), pages 306-315, March.
    30. George E. Battese & D. S. Prasada Rao, 2002. "Technology Gap, Efficiency, and a Stochastic Metafrontier Function," International Journal of Business and Economics, School of Management Development, Feng Chia University, Taichung, Taiwan, vol. 1(2), pages 87-93, August.
    31. Mehdi Farsi & Massimo Filippini & William Greene, 2006. "Application Of Panel Data Models In Benchmarking Analysis Of The Electricity Distribution Sector," Annals of Public and Cooperative Economics, Wiley Blackwell, vol. 77(3), pages 271-290, September.
    32. Kopsakangas-Savolainen, Maria & Svento, Rauli, 2008. "Estimation of cost-effectiveness of the Finnish electricity distribution utilities," Energy Economics, Elsevier, vol. 30(2), pages 212-229, March.
    33. Luis Orea & Subal C. Kumbhakar, 2004. "Efficiency measurement using a latent class stochastic frontier model," Empirical Economics, Springer, vol. 29(1), pages 169-183, January.
    34. Farsi, Mehdi & Filippini, Massimo & Kuenzle, Michael, 2007. "Cost efficiency in the Swiss gas distribution sector," Energy Economics, Elsevier, vol. 29(1), pages 64-78, January.
    35. Mei-Ying Huang & Tsu-Tan Fu, 2013. "An examination of the cost efficiency of banks in Taiwan and China using the metafrontier cost function," Journal of Productivity Analysis, Springer, vol. 40(3), pages 387-406, December.
    36. Hosoe, Nobuhiro, 2006. "The deregulation of Japan's electricity industry," Japan and the World Economy, Elsevier, vol. 18(2), pages 230-246, March.
    37. Jamasb,Tooraj & Nepal,Rabindra & Timilsina,Govinda R., 2015. "A quarter century effort yet to come of age : a survey of power sector reforms in developing countries," Policy Research Working Paper Series 7330, The World Bank.
    38. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Toshiyuki Sueyoshi & Mika Goto, 2020. "Performance Assessment of Japanese Electric Power Industry: DEA Measurement with Future Impreciseness," Energies, MDPI, vol. 13(2), pages 1-24, January.
    2. María Molinos-Senante & Alexandros Maziotis, 2019. "Cost Efficiency of English and Welsh Water Companies: a Meta-Stochastic Frontier Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(9), pages 3041-3055, July.
    3. Xie, Bai-Chen & Ni, Kang-Kang & O'Neill, Eoghan & Li, Hong-Zhou, 2021. "The scale effect in China's power grid sector from the perspective of malmquist total factor productivity analysis," Utilities Policy, Elsevier, vol. 69(C).
    4. Walheer, Barnabé, 2018. "Aggregation of metafrontier technology gap ratios: the case of European sectors in 1995–2015," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1013-1026.
    5. Liu, Xiao-Yan & Pollitt, Michael G. & Xie, Bai-Chen & Liu, Li-Qiu, 2019. "Does environmental heterogeneity affect the productive efficiency of grid utilities in China?," Energy Economics, Elsevier, vol. 83(C), pages 333-344.
    6. Núñez, F. & Arcos-Vargas, A. & Villa, G., 2020. "Efficiency benchmarking and remuneration of Spanish electricity distribution companies," Utilities Policy, Elsevier, vol. 67(C).
    7. John N. Ng’ombe, 2017. "Technical efficiency of smallholder maize production in Zambia: a stochastic meta-frontier approach," Agrekon, Taylor & Francis Journals, vol. 56(4), pages 347-365, October.
    8. Walheer, Barnabé, 2023. "Meta-frontier and technology switchers: A nonparametric approach," European Journal of Operational Research, Elsevier, vol. 305(1), pages 463-474.
    9. Peng, Xu & Tao, Xiaoma, 2018. "Cooperative game of electricity retailers in China's spot electricity market," Energy, Elsevier, vol. 145(C), pages 152-170.
    10. Zhang, Tao & Li, Hong-Zhou & Xie, Bai-Chen, 2022. "Have renewables and market-oriented reforms constrained the technical efficiency improvement of China's electric grid utilities?," Energy Economics, Elsevier, vol. 114(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Hong-Zhou & Kopsakangas-Savolainen, Maria & Xiao, Xing-Zhi & Tian, Zhen-Zhen & Yang, Xiao-Yuan & Wang, Jian-Lin, 2016. "Cost efficiency of electric grid utilities in China: A comparison of estimates from SFA–MLE, SFA–Bayes and StoNED–CNLS," Energy Economics, Elsevier, vol. 55(C), pages 272-283.
    2. Li, Hong-Zhou & Tian, Xian-Liang & Zou, Tao, 2015. "Impact analysis of coal-electricity pricing linkage scheme in China based on stochastic frontier cost function," Applied Energy, Elsevier, vol. 151(C), pages 296-305.
    3. Zarkovic, Maja, 2020. "Cap-and-trade and produce at least cost? Investigating firm behaviour in the EU ETS," Working papers 2020/12, Faculty of Business and Economics - University of Basel.
    4. Economou, Polychronis & Malefaki, Sonia & Kounetas, Konstantinos, 2019. "Productive Performance and Technology Gaps using a Bayesian Metafrontier Production Function: A cross-country comparison," MPRA Paper 94462, University Library of Munich, Germany.
    5. Tsekouras, Kostas & Chatzistamoulou, Nikos & Kounetas, Kostas, 2017. "Productive performance, technology heterogeneity and hierarchies: Who to compare with whom," International Journal of Production Economics, Elsevier, vol. 193(C), pages 465-478.
    6. Owusu, Rebecca & Kwadzo, Moses & Ghartey, William, 2022. "Regional Productivity Differential and Technology Gap In African Agriculture: A Stochastic Metafrontier Approach," International Journal of Food and Agricultural Economics (IJFAEC), Alanya Alaaddin Keykubat University, Department of Economics and Finance, vol. 10(1), January.
    7. Li, Hong-Zhou & Kopsakangas-Savolainen, Maria & Yan, Ming-Zhe & Wang, Jian-Lin & Xie, Bai-Chen, 2019. "Which provincial administrative regions in China should reduce their coal consumption? An environmental energy input requirement function based analysis," Energy Policy, Elsevier, vol. 127(C), pages 51-63.
    8. Otieno, David Jakinda & Hubbard, Lionel J. & Ruto, Eric, 2011. "Technical efficiency and technology gaps in beef cattle production systems in Kenya: A stochastic metafrontier analysis," 85th Annual Conference, April 18-20, 2011, Warwick University, Coventry, UK 108947, Agricultural Economics Society.
    9. Thanh Pham Thien Nguyen & Son Hong Nghiem & Eduardo Roca & Parmendra Sharma, 2016. "Efficiency, innovation and competition: evidence from Vietnam, China and India," Empirical Economics, Springer, vol. 51(3), pages 1235-1259, November.
    10. Tanko, Mohammed & Ismaila, Salifu, 2021. "How culture and religion influence the agriculture technology gap in Northern Ghana," World Development Perspectives, Elsevier, vol. 22(C).
    11. Barros, Carlos Pestana & Chen, Zhongfei & Managi, Shunsuke & Antunes, Olinda Sequeira, 2013. "Examining the cost efficiency of Chinese hydroelectric companies using a finite mixture model," Energy Economics, Elsevier, vol. 36(C), pages 511-517.
    12. Xie, Bai-Chen & Zhang, Zhen-Jiang & Anaya, Karim L., 2021. "Has the unbundling reform improved the service efficiency of China's power grid firms?," Energy Economics, Elsevier, vol. 95(C).
    13. Delnava, Haleh & Khosravi, Ali & El Haj Assad, Mamdouh, 2023. "Metafrontier frameworks for estimating solar power efficiency in the United States using stochastic nonparametric envelopment of data (StoNED)," Renewable Energy, Elsevier, vol. 213(C), pages 195-204.
    14. Barros, Carlos Pestana & Managi, Shunsuke, 2009. "Regulation, pollution and heterogeneity in Japanese steam power generation companies," Energy Policy, Elsevier, vol. 37(8), pages 3109-3114, August.
    15. Chiu, Yung-ho & Luo, Zhengying & Chen, Yu-Chuan & Wang, Zebin & Tsai, Min-Pei, 2013. "A comparison of operating performance management between Taiwan banks and foreign banks based on the Meta-Hybrid DEA model," Economic Modelling, Elsevier, vol. 33(C), pages 433-439.
    16. Abebayehu Girma Geffersa & Frank Wogbe Agbola & Amir Mahmood, 2022. "Modelling technical efficiency and technology gap in smallholder maize sector in Ethiopia: accounting for farm heterogeneity," Applied Economics, Taylor & Francis Journals, vol. 54(5), pages 506-521, January.
    17. Lundgren, Tommy & Marklund, Per-Olov & Zhang, Shanshan, 2016. "Industrial energy demand and energy efficiency – Evidence from Sweden," Resource and Energy Economics, Elsevier, vol. 43(C), pages 130-152.
    18. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    19. repec:cuf:journl:y:2017:v:18:i:1:valles-gimenez is not listed on IDEAS
    20. Farsi, Mehdi & Filippini, Massimo, 2009. "An analysis of cost efficiency in Swiss multi-utilities," Energy Economics, Elsevier, vol. 31(2), pages 306-315, March.
    21. Bravo-Ureta, Boris E. & Higgins, Daniel & Arslan, Aslihan, 2020. "Irrigation infrastructure and farm productivity in the Philippines: A stochastic Meta-Frontier analysis," World Development, Elsevier, vol. 135(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:108:y:2017:i:c:p:606-616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.