IDEAS home Printed from
   My bibliography  Save this article

A new approach to estimating the metafrontier production function based on a stochastic frontier framework


  • Cliff Huang
  • Tai-Hsin Huang
  • Nan-Hung Liu


This paper proposes a new two-step stochastic frontier approach to estimate technical efficiency (TE) scores for firms in different groups adopting distinct technologies. Analogous to Battese et al. (J Prod Anal 21:91–103, 2004 ), the metafrontier production function allows for calculating comparable TE measures, which can be decomposed into group specific TE measures and technology gap ratios. The proposed approach differs from Battese et al. (J Prod Anal 21:91–103, 2004 ) and O’Donnell et al. (Empir Econ 34:231–255, 2008 ) mainly in the second step, where a stochastic frontier analysis model is formulated and applied to obtain the estimates of the metafrontier, instead of relying on programming techniques. The so-derived estimators have the desirable statistical properties and enable the statistical inferences to be drawn. While the within-group variation in firms’ technical efficiencies is frequently assumed to be associated with firm-specific exogenous variables, the between-group variation in technology gaps can be specified as a function of some exogenous variables to take account of group-specific environmental differences. Two empirical applications are illustrated and the results appear to support the use of our model. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • Cliff Huang & Tai-Hsin Huang & Nan-Hung Liu, 2014. "A new approach to estimating the metafrontier production function based on a stochastic frontier framework," Journal of Productivity Analysis, Springer, vol. 42(3), pages 241-254, December.
  • Handle: RePEc:kap:jproda:v:42:y:2014:i:3:p:241-254
    DOI: 10.1007/s11123-014-0402-2

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    File URL:
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Yujiro Hayami, 1969. "Sources of Agricultural Productivity Gap Among Selected Countries," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 51(3), pages 564-575.
    2. Hung-pin Lai & Cliff Huang, 2010. "Likelihood ratio tests for model selection of stochastic frontier models," Journal of Productivity Analysis, Springer, vol. 34(1), pages 3-13, August.
    3. Christopher O’Donnell & D. Rao & George Battese, 2008. "Metafrontier frameworks for the study of firm-level efficiencies and technology ratios," Empirical Economics, Springer, vol. 34(2), pages 231-255, March.
    4. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    5. Schmidt, Peter, 1976. "On the Statistical Estimation of Parametric Frontier Production Functions," The Review of Economics and Statistics, MIT Press, vol. 58(2), pages 238-239, May.
    6. Battese, G E & Coelli, T J, 1995. "A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data," Empirical Economics, Springer, vol. 20(2), pages 325-332.
    7. Hung-Jen Wang, 2002. "Heteroscedasticity and Non-Monotonic Efficiency Effects of a Stochastic Frontier Model," Journal of Productivity Analysis, Springer, vol. 18(3), pages 241-253, November.
    8. Hayami, Yujiro & Ruttan, Vernon W, 1970. "Agricultural Productivity Differences Among Countries," American Economic Review, American Economic Association, vol. 60(5), pages 895-911, December.
    9. Tai-Hsin Huang, 2005. "A Study on the Productivities of IT Capital and Computer Labor: Firm-level Evidence from Taiwan’s Banking Industry," Journal of Productivity Analysis, Springer, vol. 24(3), pages 241-257, November.
    10. George Battese & D. Rao & Christopher O'Donnell, 2004. "A Metafrontier Production Function for Estimation of Technical Efficiencies and Technology Gaps for Firms Operating Under Different Technologies," Journal of Productivity Analysis, Springer, vol. 21(1), pages 91-103, January.
    11. George E. Battese & D. S. Prasada Rao, 2002. "Technology Gap, Efficiency, and a Stochastic Metafrontier Function," International Journal of Business and Economics, School of Management Development, Feng Chia University, Taichung, Taiwan, vol. 1(2), pages 87-93, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thanh Pham Thien Nguyen & Son Hong Nghiem & Eduardo Roca & Parmendra Sharma, 2016. "Efficiency, innovation and competition: evidence from Vietnam, China and India," Empirical Economics, Springer, vol. 51(3), pages 1235-1259, November.
    2. Huang, Tai-Hsin & Chiang, Dien-Lin & Tsai, Chao-Min, 2015. "Applying the New Metafrontier Directional Distance Function to Compare Banking Efficiencies in Central and Eastern European Countries," Economic Modelling, Elsevier, vol. 44(C), pages 188-199.
    3. Tsekouras, Kostas & Chatzistamoulou, Nikos & Kounetas, Kostas, 2017. "Productive performance, technology heterogeneity and hierarchies: Who to compare with whom," International Journal of Production Economics, Elsevier, vol. 193(C), pages 465-478.
    4. Jacob Asravor & Alexander N. Wiredu & Khalid Siddig & Edward E. Onumah, 2019. "Evaluating the Environmental-Technology Gaps of Rice Farms in Distinct Agro-Ecological Zones of Ghana," Sustainability, MDPI, vol. 11(7), pages 1-16, April.
    5. Khanal, Uttam & Wilson, Clevo & Shankar, Sriram & Hoang, Viet-Ngu & Lee, Boon, 2018. "Farm performance analysis: Technical efficiencies and technology gaps of Nepalese farmers in different agro-ecological regions," Land Use Policy, Elsevier, vol. 76(C), pages 645-653.
    6. Abebayehu Girma Geffersa & Frank Wogbe Agbola & Amir Mahmood, 2022. "Modelling technical efficiency and technology gap in smallholder maize sector in Ethiopia: accounting for farm heterogeneity," Applied Economics, Taylor & Francis Journals, vol. 54(5), pages 506-521, January.
    7. Afsharian, Mohsen & Ahn, Heinz & Harms, Sören Guntram, 2019. "Performance comparison of management groups under centralised management," European Journal of Operational Research, Elsevier, vol. 278(3), pages 845-854.
    8. Yung-Hsiang LU & Ku-Hsieh CHEN & Chun-Cheng WU, 2015. "Cross-country analysis of efficiency and productivity in the biotech industry: an application of the generalized metafrontier Malmquist productivity index," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 61(3), pages 116-134.
    9. He, Yan & Chiu, Yung-ho & Zhang, Bin, 2015. "The impact of corporate governance on state-owned and non-state-owned firms efficiency in China," The North American Journal of Economics and Finance, Elsevier, vol. 33(C), pages 252-277.
    10. Hong-Oanh Nguyen & Hong-Son Nghiem & Young-Tae Chang, 2018. "A regional perspective of port performance using metafrontier analysis: the case study of Vietnamese ports," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 20(1), pages 112-130, March.
    11. Tanko, Mohammed & Ismaila, Salifu, 2021. "How culture and religion influence the agriculture technology gap in Northern Ghana," World Development Perspectives, Elsevier, vol. 22(C).
    12. Chiu, Yung-Ho & Lee, Jen-Hui & Lu, Ching-Cheng & Shyu, Ming-Kuang & Luo, Zhengying, 2012. "The technology gap and efficiency measure in WEC countries: Application of the hybrid meta frontier model," Energy Policy, Elsevier, vol. 51(C), pages 349-357.
    13. Wang, Miao & Feng, Chao, 2023. "Measuring capacity utilization under the constraints of energy consumption and CO2 emissions using meta-frontier DEA: A case of China's non-ferrous metal industries," Resources Policy, Elsevier, vol. 80(C).
    14. Walheer, Barnabé, 2023. "Meta-frontier and technology switchers: A nonparametric approach," European Journal of Operational Research, Elsevier, vol. 305(1), pages 463-474.
    15. Joachim Nyemeck BINAM & Jim GOCKOWSKI & Guy Blaise NKAMLEU, 2008. "Technical Efficiency And Productivity Potential Of Cocoa Farmers In West African Countries," The Developing Economies, Institute of Developing Economies, vol. 46(3), pages 242-263, September.
    16. Economou, Polychronis & Malefaki, Sonia & Kounetas, Konstantinos, 2019. "Productive Performance and Technology Gaps using a Bayesian Metafrontier Production Function: A cross-country comparison," MPRA Paper 94462, University Library of Munich, Germany.
    17. John N. Ng’ombe, 2017. "Technical efficiency of smallholder maize production in Zambia: a stochastic meta-frontier approach," Agrekon, Taylor & Francis Journals, vol. 56(4), pages 347-365, October.
    18. Víctor Moreira & Boris Bravo-Ureta, 2010. "Technical efficiency and metatechnology ratios for dairy farms in three southern cone countries: a stochastic meta-frontier model," Journal of Productivity Analysis, Springer, vol. 33(1), pages 33-45, February.
    19. Shalander Kumar & Abhishek Das & Michael Hauser & Geoffrey Muricho & Tulu Degefu & Asnake Fikre & Chris Ojiewo & Setotaw Ferede & Rajeev K. Varshney, 2022. "Estimating the potential to close yield gaps through increased efficiency of chickpea production in Ethiopia," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(5), pages 1241-1258, October.
    20. Maria Martinez Cillero & Michael Wallace & Fiona Thorne & James Breen, 2021. "Analyzing the Impact of Subsidies on Beef Production Efficiency in Selected European Union Countries. A Stochastic Metafrontier Approach," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(5), pages 1903-1923, October.

    More about this item


    Metafrontier; Technical efficiency; Technology gap; Environmental variables; C51; D24;
    All these keywords.

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jproda:v:42:y:2014:i:3:p:241-254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.