IDEAS home Printed from https://ideas.repec.org/p/ags/iaae15/211647.html
   My bibliography  Save this paper

A Meta-Frontier Approach to Measuring Technical Efficiency and Technology Gaps in Beef Cattle Production in Argentina

Author

Listed:
  • Gatti, Nicolas
  • Lema, Daniel
  • Brescia, Victor

Abstract

In this paper the stochastic metafrontier method is applied to estimate technical efficiency (TE) and metatechnology ratios (MTR), in beef cattle production for three distinct regions in Argentina. A deterministic stochastic metafrontier production function model is estimated that envelops the individual stochastic frontiers of the three regions. Our results show that firms from Pampean region, the most favored in terms of environment conditions, have an average (TE) of 53.7%, meanwhile for others regions the TE is around 58.9-66.97%. The average MTR for Pampean region is 96.8%, in contrast, the others regions have an average MTR of 42%. Our results suggest that, farms in the Pampean region could improve their performance through a better management using the available technologies and resources. In regions II and III the improvement of the productivity is likely to require additional investment in research to adapt and develop new technologies.

Suggested Citation

  • Gatti, Nicolas & Lema, Daniel & Brescia, Victor, 2015. "A Meta-Frontier Approach to Measuring Technical Efficiency and Technology Gaps in Beef Cattle Production in Argentina," 2015 Conference, August 9-14, 2015, Milan, Italy 211647, International Association of Agricultural Economists.
  • Handle: RePEc:ags:iaae15:211647
    DOI: 10.22004/ag.econ.211647
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/211647/files/Gatti-A%20Meta-Frontier%20Approach%20to%20Measuring%20Technical%20Efficiency%20and%20Technology%20Gaps-1179.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.211647?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Otieno, David Jakinda & Hubbard, Lionel J. & Ruto, Eric, 2012. "Determinants of technical efficiency in beef cattle production in Kenya," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 125853, International Association of Agricultural Economists.
    2. Unknown, 2008. "Institute of Agricultural Economics," Economics of Agriculture, Institute of Agricultural Economics, vol. 55(3).
    3. George E. Battese & Sohail J. Malik & Sumiter Broca, 1993. "Production Functions for Wheat Farmers in Selected Districts of Pakistan: An Application of a Stochastic Frontier Production Function with Time-varying Inefficiency Effects," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 32(3), pages 233-268.
    4. Yujiro Hayami, 1969. "Sources of Agricultural Productivity Gap Among Selected Countries," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 51(3), pages 564-575.
    5. Gallacher, Marcos & Goetz, Stephan J. & Debertin, David L., 1994. "Managerial form, ownership and efficiency: a case-study of Argentine agriculture," Agricultural Economics, Blackwell, vol. 11(2-3), pages 289-299, December.
    6. George Battese & D. Rao & Christopher O'Donnell, 2004. "A Metafrontier Production Function for Estimation of Technical Efficiencies and Technology Gaps for Firms Operating Under Different Technologies," Journal of Productivity Analysis, Springer, vol. 21(1), pages 91-103, January.
    7. Tim Coelli & Antonio Estache & Sergio Perelman & Lourdes Trujillo, 2003. "A Primer on Efficiency Measurement for Utilities and Transport Regulators," World Bank Publications - Books, The World Bank Group, number 15149, December.
    8. Yair Mundlak & René Hellinghausen, 1982. "The Intercountry Agricultural Production Function: Another View," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 64(4), pages 664-672.
    9. George E. Battese & D. S. Prasada Rao, 2002. "Technology Gap, Efficiency, and a Stochastic Metafrontier Function," International Journal of Business and Economics, School of Management Development, Feng Chia University, Taichung, Taiwan, vol. 1(2), pages 87-93, August.
    10. Rakipova, Anna N. & Gillespie, Jeffrey M. & Franke, Donald E., 2003. "Determinants of Technical Efficiency in Louisiana Beef Cattle Production," Journal of the ASFMRA, American Society of Farm Managers and Rural Appraisers, vol. 2003, pages 1-9.
    11. Antonio Alvarez & Julio del Corral, 2010. "Identifying different technologies using a latent class model: extensive versus intensive dairy farms," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 37(2), pages 231-250, June.
    12. Víctor Moreira & Boris Bravo-Ureta, 2010. "Technical efficiency and metatechnology ratios for dairy farms in three southern cone countries: a stochastic meta-frontier model," Journal of Productivity Analysis, Springer, vol. 33(1), pages 33-45, February.
    13. Marcos Gallacher, 1999. "Human Capital and Production Efficiency: Argentine Agriculture," CEMA Working Papers: Serie Documentos de Trabajo. 158, Universidad del CEMA.
    14. Chen, Zhuo & Song, Shunfeng, 2008. "Efficiency and technology gap in China's agriculture: A regional meta-frontier analysis," China Economic Review, Elsevier, vol. 19(2), pages 287-296, June.
    15. Villano, Renato A. & Fleming, Euan M. & Fleming, Pauline, 2008. "Measuring Regional Productivity Differences in the Australian Wool Industry: A Metafrontier Approach," 2008 Conference (52nd), February 5-8, 2008, Canberra, Australia 6036, Australian Agricultural and Resource Economics Society.
    16. Battese, G E & Coelli, T J, 1995. "A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data," Empirical Economics, Springer, vol. 20(2), pages 325-332.
    17. Christopher O’Donnell & D. Rao & George Battese, 2008. "Metafrontier frameworks for the study of firm-level efficiencies and technology ratios," Empirical Economics, Springer, vol. 34(2), pages 231-255, March.
    18. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    19. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    20. Lau, Lawrence J. & Yotopoulos, Pan A., 1989. "The meta-production function approach to technological change in world agriculture," Journal of Development Economics, Elsevier, vol. 31(2), pages 241-269, October.
    21. Featherstone, Allen M. & Langemeier, Michael R. & Ismet, Mohammad, 1997. "A Nonparametric Analysis of Efficiency for a Sample of Kansas Beef Cow Farms," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 29(1), pages 175-184, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emilio Aguirre & Federico García-Suárez & Gabriela Sicilia, 2021. "Eficiencia técnica en la ganadería de carne bovina pastoril. Medición y exploración de sus determinantes en Uruguay," Documentos de Trabajo (working papers) 1321, Department of Economics - dECON.
    2. Garcia Suarez, F. & Quesada, G. Perez & Molina Ricetto, C., 2018. "Rangeland cattle production in Uruguay: single-output versus multi-output efficiency measures," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277178, International Association of Agricultural Economists.
    3. García-Suárez, Federico & Pérez-Quesada, Gabriela & Molina, Carlos, 2022. "Rangeland cattle production in Uruguay: Single-output versus multi-output efficiency measures," Economia Agraria y Recursos Naturales, Spanish Association of Agricultural Economists, vol. 22(01), June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Otieno, David Jakinda & Hubbard, Lionel J. & Ruto, Eric, 2011. "Technical efficiency and technology gaps in beef cattle production systems in Kenya: A stochastic metafrontier analysis," 85th Annual Conference, April 18-20, 2011, Warwick University, Coventry, UK 108947, Agricultural Economics Society.
    2. Otieno, David Jakinda & Hubbard, Lionel J. & Ruto, Eric, 2012. "Determinants of technical efficiency in beef cattle production in Kenya," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 125853, International Association of Agricultural Economists.
    3. Nwigwe, Cecilia & Okoruwa, Victor & Obi-Egbedi, Oghenerueme, 2015. "Efficiency differentials and technological gaps in beef cattle production systems in Nigeria," 2015 Conference, August 9-14, 2015, Milan, Italy 229377, International Association of Agricultural Economists.
    4. Bahta, Sirak & Baker, Derek & Malope, Patrick & Katijuongua, Hikuepi, 2015. "A metafronteir analysis of determinants of technical efficiency in beef farm types: an application to Botswana," 2015 Conference, August 9-14, 2015, Milan, Italy 211194, International Association of Agricultural Economists.
    5. Farnaz Pourzand & Mohammad Bakhshoodeh, 2014. "Technical effici ency and agricultural sustainability–technology gap of maize producers in Fars province of Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 16(3), pages 671-688, June.
    6. Joachim Nyemeck BINAM & Jim GOCKOWSKI & Guy Blaise NKAMLEU, 2008. "Technical Efficiency And Productivity Potential Of Cocoa Farmers In West African Countries," The Developing Economies, Institute of Developing Economies, vol. 46(3), pages 242-263, September.
    7. Víctor Moreira & Boris Bravo-Ureta, 2010. "Technical efficiency and metatechnology ratios for dairy farms in three southern cone countries: a stochastic meta-frontier model," Journal of Productivity Analysis, Springer, vol. 33(1), pages 33-45, February.
    8. Gong, Binlei, 2018. "Agricultural reforms and production in China: Changes in provincial production function and productivity in 1978–2015," Journal of Development Economics, Elsevier, vol. 132(C), pages 18-31.
    9. George E. Battese & D. S. Prasada Rao, 2002. "Technology Gap, Efficiency, and a Stochastic Metafrontier Function," International Journal of Business and Economics, School of Management Development, Feng Chia University, Taichung, Taiwan, vol. 1(2), pages 87-93, August.
    10. Bravo-Ureta, Boris E. & Higgins, Daniel & Arslan, Aslihan, 2020. "Irrigation infrastructure and farm productivity in the Philippines: A stochastic Meta-Frontier analysis," World Development, Elsevier, vol. 135(C).
    11. Yung-Hsiang LU & Ku-Hsieh CHEN & Chun-Cheng WU, 2015. "Cross-country analysis of efficiency and productivity in the biotech industry: an application of the generalized metafrontier Malmquist productivity index," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 61(3), pages 116-134.
    12. Tanko, Mohammed & Ismaila, Salifu, 2021. "How culture and religion influence the agriculture technology gap in Northern Ghana," World Development Perspectives, Elsevier, vol. 22(C).
    13. Chiu, Yung-Ho & Lee, Jen-Hui & Lu, Ching-Cheng & Shyu, Ming-Kuang & Luo, Zhengying, 2012. "The technology gap and efficiency measure in WEC countries: Application of the hybrid meta frontier model," Energy Policy, Elsevier, vol. 51(C), pages 349-357.
    14. Guy Nkamleu & Joachim Nyemeck & Jim Gockowsk, 2010. "Working Paper 104 - Technology Gap and Efficiency in Cocoa Production in West and Central Africa: Implications for Cocoa Sector Development," Working Paper Series 241, African Development Bank.
    15. Kerstens, Kristiaan & O’Donnell, Christopher & Van de Woestyne, Ignace, 2019. "Metatechnology frontier and convexity: A restatement," European Journal of Operational Research, Elsevier, vol. 275(2), pages 780-792.
    16. Economou, Polychronis & Malefaki, Sonia & Kounetas, Konstantinos, 2019. "Productive Performance and Technology Gaps using a Bayesian Metafrontier Production Function: A cross-country comparison," MPRA Paper 94462, University Library of Munich, Germany.
    17. Khanal, Uttam & Wilson, Clevo & Shankar, Sriram & Hoang, Viet-Ngu & Lee, Boon, 2018. "Farm performance analysis: Technical efficiencies and technology gaps of Nepalese farmers in different agro-ecological regions," Land Use Policy, Elsevier, vol. 76(C), pages 645-653.
    18. Kevin Sylwester, 2002. "Democracy and Changes in Income Inequality," International Journal of Business and Economics, School of Management Development, Feng Chia University, Taichung, Taiwan, vol. 1(2), pages 167-178, August.
    19. Roengchai Tansuchat, 2023. "A Copula-Based Meta-Stochastic Frontier Analysis for Comparing Traditional and HDPE Geomembranes Technology in Sea Salt Farming among Farmers in Phetchaburi, Thailand," Agriculture, MDPI, vol. 13(4), pages 1-23, March.
    20. Ku-Hsieh Chen & Hao-Yen Yang, 2011. "A cross-country comparison of productivity growth using the generalised metafrontier Malmquist productivity index: with application to banking industries in Taiwan and China," Journal of Productivity Analysis, Springer, vol. 35(3), pages 197-212, June.

    More about this item

    Keywords

    Livestock Production/Industries; Research and Development/Tech Change/Emerging Technologies;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:iaae15:211647. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/iaaeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.