IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v62y2022i3d10.1007_s00181-021-02060-0.html
   My bibliography  Save this article

Addressing endogeneity when estimating stochastic ray production frontiers: a Bayesian approach

Author

Listed:
  • Mike Tsionas

    (Lancaster University Management School)

  • Marwan Izzeldin

    (Lancaster University Management School)

  • Arne Henningsen

    (University of Copenhagen)

  • Evaggelos Paravalos

    (Athens University of Economics and Business)

Abstract

We propose a Bayesian approach for inference in the stochastic ray production frontier (SRPF), which can model multiple-input–multiple-output production technologies even in case of zero output quantities, i.e., if some outputs are not produced by some of the firms. However, the econometric estimation of the SRPF—as the estimation of distance functions in general—is susceptible to endogeneity problems. To address these problems, we apply a profit-maximizing framework to derive a system of equations after incorporating technical inefficiency. As the latter enters non-trivially into the system of equations and as the Jacobian is highly complicated, we use Monte Carlo methods of inference. Using US banking data to illustrate our innovative approach, we also address the problems of missing prices and the dependence on the ordering of the outputs via model averaging.

Suggested Citation

  • Mike Tsionas & Marwan Izzeldin & Arne Henningsen & Evaggelos Paravalos, 2022. "Addressing endogeneity when estimating stochastic ray production frontiers: a Bayesian approach," Empirical Economics, Springer, vol. 62(3), pages 1345-1363, March.
  • Handle: RePEc:spr:empeco:v:62:y:2022:i:3:d:10.1007_s00181-021-02060-0
    DOI: 10.1007/s00181-021-02060-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00181-021-02060-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00181-021-02060-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Efthymios G. Tsionas, 2006. "Inference in dynamic stochastic frontier models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(5), pages 669-676, July.
    2. Kumbhakar, Subal C & Bhattacharyya, Arunava, 1992. "Price Distortions and Resource-Use Efficiency in Indian Agriculture: A Restricted Profit Function Approach," The Review of Economics and Statistics, MIT Press, vol. 74(2), pages 231-239, May.
    3. Barten, A. P., 1969. "Maximum likelihood estimation of a complete system of demand equations," European Economic Review, Elsevier, vol. 1(1), pages 7-73.
    4. Efthymios G. Tsionas, 2002. "Stochastic frontier models with random coefficients," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(2), pages 127-147.
    5. Efthymios Tsionas, 2000. "Full Likelihood Inference in Normal-Gamma Stochastic Frontier Models," Journal of Productivity Analysis, Springer, vol. 13(3), pages 183-205, May.
    6. Cuesta, Rafael A. & Orea, Luis, 2002. "Mergers and technical efficiency in Spanish savings banks: A stochastic distance function approach," Journal of Banking & Finance, Elsevier, vol. 26(12), pages 2231-2247.
    7. Terrell, Dek, 1996. "Incorporating Monotonicity and Concavity Conditions in Flexible Functional Forms," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(2), pages 179-194, March-Apr.
    8. Arne Henningsen & Christian Henning, 2009. "Imposing regional monotonicity on translog stochastic production frontiers with a simple three-step procedure," Journal of Productivity Analysis, Springer, vol. 32(3), pages 217-229, December.
    9. Efthymios G. Tsionas & Subal C. Kumbhakar & Emir Malikov, 2015. "Estimation of Input Distance Functions: A System Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 97(5), pages 1478-1493.
    10. Koop, Gary & Osiewalski, Jacek & Steel, Mark F J, 1994. "Bayesian Efficiency Analysis with a Flexible Form: The AIM Cost Function," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(3), pages 339-346, July.
    11. Shawna Grosskopf & Kathy J. Hayes & Lori L. Taylor & William L. Weber, 1997. "Budget-Constrained Frontier Measures Of Fiscal Equality And Efficiency In Schooling," The Review of Economics and Statistics, MIT Press, vol. 79(1), pages 116-124, February.
    12. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    13. Vivas, Ana Lozano, 1997. "Profit efficiency for Spanish savings banks," European Journal of Operational Research, Elsevier, vol. 98(2), pages 381-394, April.
    14. O'Donnell, Christopher J. & Coelli, Timothy J., 2005. "A Bayesian approach to imposing curvature on distance functions," Journal of Econometrics, Elsevier, vol. 126(2), pages 493-523, June.
    15. Berger, Allen N. & Mester, Loretta J., 1997. "Inside the black box: What explains differences in the efficiencies of financial institutions?," Journal of Banking & Finance, Elsevier, vol. 21(7), pages 895-947, July.
    16. Mehdi Farsi & Massimo Filippini, 2004. "An Empirical Analysis of Cost Efficiency in Non‐profit and Public Nursing Homes," Annals of Public and Cooperative Economics, Wiley Blackwell, vol. 75(3), pages 339-365, September.
    17. Schmidt, Peter & Sickles, Robin C, 1984. "Production Frontiers and Panel Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(4), pages 367-374, October.
    18. van den Broeck, Julien & Koop, Gary & Osiewalski, Jacek & Steel, Mark F. J., 1994. "Stochastic frontier models : A Bayesian perspective," Journal of Econometrics, Elsevier, vol. 61(2), pages 273-303, April.
    19. Bernhard Brümmer & Thomas Glauben & Geert Thijssen, 2002. "Decomposition of Productivity Growth Using Distance Functions: The Case of Dairy Farms in Three European Countries," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 84(3), pages 628-644.
    20. Battese, George E. & Corra, Greg S., 1977. "Estimation Of A Production Frontier Model: With Application To The Pastoral Zone Of Eastern Australia," Australian Journal of Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 21(3), pages 1-11, December.
    21. Jalal Akhavein & P. Swamy & Stephen Taubman & Rao Singamsetti, 1997. "A General Method of Deriving the Inefficiencies of Banks from a Profit Function," Journal of Productivity Analysis, Springer, vol. 8(1), pages 71-93, March.
    22. Robin Sickles & David Good & Lullit Getachew, 2002. "Specification of Distance Functions Using Semi- and Nonparametric Methods with an Application to the Dynamic Performance of Eastern and Western European Air Carriers," Journal of Productivity Analysis, Springer, vol. 17(1), pages 133-155, January.
    23. John C. Quiggin & Anh Bui‐Lan, 1984. "The Use Of Cross‐Sectional Estimates Of Profit Functions For Tests Of Relative Efficiency: A Critical Review," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 28(1), pages 44-55, April.
    24. Atkinson, Scott E. & Dorfman, Jeffrey H., 2005. "Bayesian measurement of productivity and efficiency in the presence of undesirable outputs: crediting electric utilities for reducing air pollution," Journal of Econometrics, Elsevier, vol. 126(2), pages 445-468, June.
    25. Tai-hsin Huang & Mei-hui Wang, 2004. "Comparisons of Economic Inefficiency Between Output and Input Measures of Technical Inefficiency Using the Fourier Flexible Cost Function," Journal of Productivity Analysis, Springer, vol. 22(1), pages 123-142, July.
    26. Koop, Gary & Osiewalski, Jacek & Steel, Mark F. J., 1997. "Bayesian efficiency analysis through individual effects: Hospital cost frontiers," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 77-105.
    27. BARTEN, Anton P., 1969. "Maximum likelihood estimation of a complete system of demand equations," LIDAM Reprints CORE 34, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    28. Willam Greene, 2005. "Fixed and Random Effects in Stochastic Frontier Models," Journal of Productivity Analysis, Springer, vol. 23(1), pages 7-32, January.
    29. Henningsen, Arne & Bělín, Matěj & Henningsen, Géraldine, 2017. "New insights into the stochastic ray production frontier," Economics Letters, Elsevier, vol. 156(C), pages 18-21.
    30. Ferrier, Gary D. & Lovell, C. A. Knox, 1990. "Measuring cost efficiency in banking : Econometric and linear programming evidence," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 229-245.
    31. Tim Coelli & Sergio Perelman, 2000. "Technical efficiency of European railways: a distance function approach," Applied Economics, Taylor & Francis Journals, vol. 32(15), pages 1967-1976.
    32. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    33. U.‐G. Gerdtham & M. Löthgren & M. Tambour & C. Rehnberg, 1999. "Internal markets and health care efficiency: a multiple‐output stochastic frontier analysis," Health Economics, John Wiley & Sons, Ltd., vol. 8(2), pages 151-164, March.
    34. Kumbhakar, Subal C., 1990. "Production frontiers, panel data, and time-varying technical inefficiency," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 201-211.
    35. Géraldine Henningsen & Arne Henningsen & Uwe Jensen, 2015. "A Monte Carlo study on multiple output stochastic frontiers: a comparison of two approaches," Journal of Productivity Analysis, Springer, vol. 44(3), pages 309-320, December.
    36. Coelli, Tim & Perelman, Sergio, 1999. "A comparison of parametric and non-parametric distance functions: With application to European railways," European Journal of Operational Research, Elsevier, vol. 117(2), pages 326-339, September.
    37. Fare, Rolf, et al, 1993. "Derivation of Shadow Prices for Undesirable Outputs: A Distance Function Approach," The Review of Economics and Statistics, MIT Press, vol. 75(2), pages 374-380, May.
    38. Michael D. Rosko, 2001. "Cost efficiency of US hospitals: a stochastic frontier approach," Health Economics, John Wiley & Sons, Ltd., vol. 10(6), pages 539-551, September.
    39. Pitt, Mark M. & Lee, Lung-Fei, 1981. "The measurement and sources of technical inefficiency in the Indonesian weaving industry," Journal of Development Economics, Elsevier, vol. 9(1), pages 43-64, August.
    40. George E. Battese & Greg S. Corra, 1977. "Estimation Of A Production Frontier Model: With Application To The Pastoral Zone Of Eastern Australia," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 21(3), pages 169-179, December.
    41. Bhattacharyya, Aditi & Pal, Sudeshna, 2013. "Financial reforms and technical efficiency in Indian commercial banking: A generalized stochastic frontier analysis," Review of Financial Economics, Elsevier, vol. 22(3), pages 109-117.
    42. Luis Orea & Subal C. Kumbhakar, 2004. "Efficiency measurement using a latent class stochastic frontier model," Empirical Economics, Springer, vol. 29(1), pages 169-183, January.
    43. Emir Malikov & Subal C. Kumbhakar & Mike G. Tsionas, 2016. "A Cost System Approach to the Stochastic Directional Technology Distance Function with Undesirable Outputs: The Case of us Banks in 2001–2010," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1407-1429, November.
    44. Subal C. Kumbhakar, 2001. "Estimation of Profit Functions When Profit Is Not Maximum," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 83(1), pages 1-19.
    45. Niquidet, Kurt & Nelson, Harry, 2010. "Sawmill production in the interior of British Columbia: A stochastic ray frontier approach," Journal of Forest Economics, Elsevier, vol. 16(4), pages 257-267, December.
    46. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan José Price & Arne Henningsen, 2023. "A ray-based input distance function to model zero-valued output quantities: Derivation and an empirical application," Journal of Productivity Analysis, Springer, vol. 60(2), pages 179-188, October.
    2. Zaira García-Tórtola & David Conesa & Joan Crespo & Emili Tortosa-Ausina, 2024. "Unlocking University Efficiency: A Bayesian Stochastic Frontier Analysis," Working Papers 2024/05, Economics Department, Universitat Jaume I, Castellón (Spain).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luis R. Murillo‐Zamorano, 2004. "Economic Efficiency and Frontier Techniques," Journal of Economic Surveys, Wiley Blackwell, vol. 18(1), pages 33-77, February.
    2. Levent Kutlu & Shasha Liu & Robin C. Sickles, 2022. "Cost, Revenue, and Profit Function Estimates," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 16, pages 641-679, Springer.
    3. Pavlos Almanidis & Mustafa U. Karakaplan & Levent Kutlu, 2019. "A dynamic stochastic frontier model with threshold effects: U.S. bank size and efficiency," Journal of Productivity Analysis, Springer, vol. 52(1), pages 69-84, December.
    4. Mike Tsionas & Marwan Izzeldin & Arne Henningsen & Evaggelos Paravalos, 2019. "Estimating Stochastic Ray Production Frontiers," IFRO Working Paper 2019/06, University of Copenhagen, Department of Food and Resource Economics.
    5. Kellermann, Magnus A., 2015. "Total Factor Productivity Decomposition and Unobserved Heterogeneity in Stochastic Frontier Models," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 44(1), pages 1-25, April.
    6. Roberto Colombi & Gianmaria Martini & Giorgio Vittadini, 2017. "Determinants of transient and persistent hospital efficiency: The case of Italy," Health Economics, John Wiley & Sons, Ltd., vol. 26(S2), pages 5-22, September.
    7. Sickles, Robin C. & Hao, Jiaqi & Shang, Chenjun, 2015. "Panel Data and Productivity Measurement," Working Papers 15-018, Rice University, Department of Economics.
    8. Valentin Zelenyuk & Zhichao Wang, 2023. "Random vs. Explained Inefficiency in Stochastic Frontier Analysis: The Case of Queensland Hospitals," CEPA Working Papers Series WP052023, School of Economics, University of Queensland, Australia.
    9. Vaneet Bhatia & Sankarshan Basu & Subrata Kumar Mitra & Pradyumna Dash, 2018. "A review of bank efficiency and productivity," OPSEARCH, Springer;Operational Research Society of India, vol. 55(3), pages 557-600, November.
    10. Orea, Luis, 2019. "The Econometric Measurement of Firms’ Efficiency," Efficiency Series Papers 2019/02, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    11. Martini, Gianmaria & Scotti, Davide & Viola, Domenico & Vittadini, Giorgio, 2020. "Persistent and temporary inefficiency in airport cost function: An application to Italy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 999-1019.
    12. Astrid Cullman & Mehdi Farsi & Massimo Filippini, 2009. "Unobserved Heterogeneity and International Benchmarking in Public Transport," CEPE Working paper series 09-65, CEPE Center for Energy Policy and Economics, ETH Zurich.
    13. Collier, Trevor & Johnson, Andrew L. & Ruggiero, John, 2011. "Technical efficiency estimation with multiple inputs and multiple outputs using regression analysis," European Journal of Operational Research, Elsevier, vol. 208(2), pages 153-160, January.
    14. Supawat Rungsuriyawiboon & Chris O'Donnell, 2004. "Curvature-Constrained Estimates of Technical Efficiency and Returns to Scale for U.S. Electric Utilities," CEPA Working Papers Series WP072004, School of Economics, University of Queensland, Australia.
    15. Pavlos Almanidis, 2013. "Accounting for heterogeneous technologies in the banking industry: a time-varying stochastic frontier model with threshold effects," Journal of Productivity Analysis, Springer, vol. 39(2), pages 191-205, April.
    16. Coelli, Tim J., 1995. "Recent Developments In Frontier Modelling And Efficiency Measurement," Australian Journal of Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 39(3), pages 1-27, December.
    17. A. Tonini, 2012. "A Bayesian stochastic frontier: an application to agricultural productivity growth in European countries," Economic Change and Restructuring, Springer, vol. 45(4), pages 247-269, November.
    18. Li, Hong-Zhou & Kopsakangas-Savolainen, Maria & Xiao, Xing-Zhi & Tian, Zhen-Zhen & Yang, Xiao-Yuan & Wang, Jian-Lin, 2016. "Cost efficiency of electric grid utilities in China: A comparison of estimates from SFA–MLE, SFA–Bayes and StoNED–CNLS," Energy Economics, Elsevier, vol. 55(C), pages 272-283.
    19. O'Donnell, Christopher J. & Coelli, Timothy J., 2005. "A Bayesian approach to imposing curvature on distance functions," Journal of Econometrics, Elsevier, vol. 126(2), pages 493-523, June.
    20. Michaelides, Panayotis G. & Vouldis, Angelos T. & Tsionas, Efthymios G., 2010. "Globally flexible functional forms: The neural distance function," European Journal of Operational Research, Elsevier, vol. 206(2), pages 456-469, October.

    More about this item

    Keywords

    Stochastic ray production frontier; Technical inefficiency; Endogeneity; Bayesian inference; Model averaging;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:62:y:2022:i:3:d:10.1007_s00181-021-02060-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.