IDEAS home Printed from https://ideas.repec.org/a/ags/arerjl/201353.html
   My bibliography  Save this article

Total Factor Productivity Decomposition and Unobserved Heterogeneity in Stochastic Frontier Models

Author

Listed:
  • Kellermann, Magnus A.

Abstract

This study examines in an empirical comparison how different econometric specifications of stochastic frontier models affect the decomposition of total factor productivity growth. We estimate nine stochastic frontier models, which have been widely used in empirical investigations of sources of productivity growth. Our results show that the relative contribution of components to total factor productivity growth is quite sensitive to the choice of econometric model, which points to the need to select the “right” model. We apply various statistical tests to narrow the range of applicable models and identify additional criteria upon which to base the choice of non-nested models.

Suggested Citation

  • Kellermann, Magnus A., 2015. "Total Factor Productivity Decomposition and Unobserved Heterogeneity in Stochastic Frontier Models," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 44(1), pages 1-25, April.
  • Handle: RePEc:ags:arerjl:201353
    DOI: 10.22004/ag.econ.201353
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/201353/files/ARER2015%2004%20Kellermann.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.201353?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Allan N. Rae & Hengyun Ma & Jikun Huang & Scott Rozelle, 2006. "Livestock in China: Commodity-Specific Total Factor Productivity Decomposition Using New Panel Data," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 88(3), pages 680-695.
    2. O'Donnell, Christopher J. & Coelli, Timothy J., 2005. "A Bayesian approach to imposing curvature on distance functions," Journal of Econometrics, Elsevier, vol. 126(2), pages 493-523, June.
    3. Giannis Karagiannis & Peter Midmore & Vangelis Tzouvelekas, 2004. "Parametric Decomposition of Output Growth Using A Stochastic Input Distance Function," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(4), pages 1044-1057.
    4. Key, Nigel D. & McBride, William D. & Mosheim, Roberto, 2008. "Decomposition of Total Factor Productivity Change in the U.S. Hog Industry," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 40(1), pages 1-13, April.
    5. Catherine J. Morrison Paul & Warren E. Johnston & Gerald A. G. Frengley, 2000. "Efficiency in New Zealand Sheep and Beef Farming: The Impacts of Regulatory Reform," The Review of Economics and Statistics, MIT Press, vol. 82(2), pages 325-337, May.
    6. Francesco Aiello & Camilla Mastromarco & Angelo Zago, 2011. "Be productive or face decline. On the sources and determinants of output growth in Italian manufacturing firms," Empirical Economics, Springer, vol. 41(3), pages 787-815, December.
    7. Hausman, Jerry A & Taylor, William E, 1981. "Panel Data and Unobservable Individual Effects," Econometrica, Econometric Society, vol. 49(6), pages 1377-1398, November.
    8. COELLI, Tim, 2000. "On the econometric estimation of the distance function representation of a production technology," LIDAM Discussion Papers CORE 2000042, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. Pitt, Mark M. & Lee, Lung-Fei, 1981. "The measurement and sources of technical inefficiency in the Indonesian weaving industry," Journal of Development Economics, Elsevier, vol. 9(1), pages 43-64, August.
    10. Schmidt, Peter & Sickles, Robin C, 1984. "Production Frontiers and Panel Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(4), pages 367-374, October.
    11. Schmidt, Peter, 1988. "Estimation of a fixed-effect Cobb-Douglas system using panel data," Journal of Econometrics, Elsevier, vol. 37(3), pages 361-380, March.
    12. Mundlak, Yair, 1978. "On the Pooling of Time Series and Cross Section Data," Econometrica, Econometric Society, vol. 46(1), pages 69-85, January.
    13. Heike Wetzel, 2008. "Productivity Growth in European Railways: Technological Progress,Efficiency Change and Scale Effects," Working Paper Series in Economics 101, University of Lüneburg, Institute of Economics.
    14. Bernhard Brümmer & Thomas Glauben & Geert Thijssen, 2002. "Decomposition of Productivity Growth Using Distance Functions: The Case of Dairy Farms in Three European Countries," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 84(3), pages 628-644.
    15. Mehdi Farsi & Massimo Filippini & Michael Kuenzle, 2005. "Unobserved heterogeneity in stochastic cost frontier models: an application to Swiss nursing homes," Applied Economics, Taylor & Francis Journals, vol. 37(18), pages 2127-2141.
    16. Giannis Karagiannis, 2005. "Explaining output growth with a heteroscedastic non-neutral production frontier: the case of sheep farms in Greece," European Review of Agricultural Economics, Foundation for the European Review of Agricultural Economics, vol. 32(1), pages 51-74, March.
    17. Bill Greene with Antonio Alvarez (Univ. of Oviedo) & Carlos Arias (Univ. of Leon), 2004. "Accounting For Unobservables In Production Models: Management And Inefficiency," Econometric Society 2004 Australasian Meetings 341, Econometric Society.
    18. Efthymios G. Tsionas, 2002. "Stochastic frontier models with random coefficients," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(2), pages 127-147.
    19. Sangho Kim & Gwangho Han, 2001. "A Decomposition of Total Factor Productivity Growth in Korean Manufacturing Industries: A Stochastic Frontier Approach," Journal of Productivity Analysis, Springer, vol. 16(3), pages 269-281, November.
    20. Polachek, Solomon W & Yoon, Bong Joon, 1996. "Panel Estimates of a Two-Tiered Earnings Frontier," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(2), pages 169-178, March-Apr.
    21. Kumbhakar, Subal C & Ghosh, Soumendra & McGuckin, J Thomas, 1991. "A Generalized Production Frontier Approach for Estimating Determinants of Inefficiency in U.S. Dairy Farms," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(3), pages 279-286, July.
    22. Awudu Abdulai & Hendrik Tietje, 2007. "Estimating technical efficiency under unobserved heterogeneity with stochastic frontier models: application to northern German dairy farms," European Review of Agricultural Economics, Foundation for the European Review of Agricultural Economics, vol. 34(3), pages 393-416, September.
    23. Luis Orea & Subal C. Kumbhakar, 2004. "Efficiency measurement using a latent class stochastic frontier model," Empirical Economics, Springer, vol. 29(1), pages 169-183, January.
    24. Goto, Mika & Sueyoshi, Toshiyuki, 2009. "Productivity growth and deregulation of Japanese electricity distribution," Energy Policy, Elsevier, vol. 37(8), pages 3130-3138, August.
    25. Massimo Filippini & Nevenka Hrovatin & Jelena Zoric, 2010. "Productivity growth and price regulation of Slovenian water distribution utilities," Zbornik radova Ekonomskog fakulteta u Rijeci/Proceedings of Rijeka Faculty of Economics, University of Rijeka, Faculty of Economics and Business, vol. 28(1), pages 89-112.
    26. Sherlund, Shane M. & Barrett, Christopher B. & Adesina, Akinwumi A., 2002. "Smallholder technical efficiency controlling for environmental production conditions," Journal of Development Economics, Elsevier, vol. 69(1), pages 85-101, October.
    27. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    28. Ahmad, Munir & Boris E., Bravo-Ureta, 1996. "Technical efficiency measures for dairy farms using panel data: a comparison of alternative model specifications," MPRA Paper 37703, University Library of Munich, Germany.
    29. Rae, Allan N. & Ma, H. & Huang, J. & Rozelle, Scott, 2006. "AJAE Appendix: Livestock in China: Commodity-specific Total Factor Productivity Decomposition Using New Panel Data," American Journal of Agricultural Economics APPENDICES, Agricultural and Applied Economics Association, vol. 88(3), pages 1-64, August.
    30. Arne Henningsen & Christian Henning, 2009. "Imposing regional monotonicity on translog stochastic production frontiers with a simple three-step procedure," Journal of Productivity Analysis, Springer, vol. 32(3), pages 217-229, December.
    31. Fried, Harold O. & Lovell, C. A. Knox & Schmidt, Shelton S. (ed.), 1993. "The Measurement of Productive Efficiency: Techniques and Applications," OUP Catalogue, Oxford University Press, number 9780195072181, November.
    32. Xueqin Zhu & Alfons Oude Lansink, 2010. "Impact of CAP Subsidies on Technical Efficiency of Crop Farms in Germany, the Netherlands and Sweden," Journal of Agricultural Economics, Wiley Blackwell, vol. 61(3), pages 545-564, September.
    33. Tovar, Beatriz & Javier Ramos-Real, Francisco & de Almeida, Edmar Fagundes, 2011. "Firm size and productivity. Evidence from the electricity distribution industry in Brazil," Energy Policy, Elsevier, vol. 39(2), pages 826-833, February.
    34. Wang, Hung-Jen & Ho, Chia-Wen, 2010. "Estimating fixed-effect panel stochastic frontier models by model transformation," Journal of Econometrics, Elsevier, vol. 157(2), pages 286-296, August.
    35. Tzouvelekas, Vangelis & Pantzios, Christos J. & Fotopoulos, Christos, 2001. "Technical efficiency of alternative farming systems: the case of Greek organic and conventional olive-growing farms," Food Policy, Elsevier, vol. 26(6), pages 549-569, December.
    36. Cornwell, Christopher & Schmidt, Peter & Sickles, Robin C., 1990. "Production frontiers with cross-sectional and time-series variation in efficiency levels," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 185-200.
    37. Johannes Sauer & Klaus Frohberg & Henrich Hockmann, 2006. "Stochastic efficiency measurement: The curse of theoretical consistency," Journal of Applied Economics, Universidad del CEMA, vol. 9, pages 139-166, May.
    38. Coelli, Tim & Perelman, Sergio, 1999. "A comparison of parametric and non-parametric distance functions: With application to European railways," European Journal of Operational Research, Elsevier, vol. 117(2), pages 326-339, September.
    39. Hallam, David & Machado, Fernando, 1996. "Efficiency Analysis with Panel Data: A Study of Portuguese Dairy Farms," European Review of Agricultural Economics, Foundation for the European Review of Agricultural Economics, vol. 23(1), pages 79-93.
    40. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    41. ZELLNER, Arnold & KMENTA, Jan & DREZE, Jacques H., 1966. "Specification and estimation of Cobb-Douglas production function models," LIDAM Reprints CORE 12, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    42. Grigorios Emvalomatis, 2012. "Productivity Growth in German Dairy Farming using a Flexible Modelling Approach," Journal of Agricultural Economics, Wiley Blackwell, vol. 63(1), pages 83-101, February.
    43. Rafael Cuesta, 2000. "A Production Model With Firm-Specific Temporal Variation in Technical Inefficiency: With Application to Spanish Dairy Farms," Journal of Productivity Analysis, Springer, vol. 13(2), pages 139-158, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christian Grovermann & K. B. Umesh & Sylvain Quiédeville & B. Ganesh Kumar & Srinivasaiah S. & Simon Moakes, 2018. "The Economic Reality of Underutilised Crops for Climate Resilience, Food Security and Nutrition: Assessing Finger Millet Productivity in India," Agriculture, MDPI, vol. 8(9), pages 1-12, August.
    2. Christian Stetter & Johannes Sauer, 2022. "Greenhouse Gas Emissions and Eco-Performance at Farm Level: A Parametric Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 81(3), pages 617-647, March.
    3. Skevas, Ioannis & Emvalomatis, Grigorios & Brümmer, Bernhard, 2018. "Productivity growth measurement and decomposition under a dynamic inefficiency specification: The case of German dairy farms," European Journal of Operational Research, Elsevier, vol. 271(1), pages 250-261.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mike Tsionas & Marwan Izzeldin & Arne Henningsen & Evaggelos Paravalos, 2022. "Addressing endogeneity when estimating stochastic ray production frontiers: a Bayesian approach," Empirical Economics, Springer, vol. 62(3), pages 1345-1363, March.
    2. Farsi, Mehdi & Filippini, Massimo, 2009. "An analysis of cost efficiency in Swiss multi-utilities," Energy Economics, Elsevier, vol. 31(2), pages 306-315, March.
    3. Zhu, Xueqin & Milán Demeter, Róbert, 2012. "Technical efficiency and productivity differentials of dairy farms in three EU countries: the role of CAP subsidies," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 13(1), pages 1-27.
    4. Boris Bravo-Ureta & Daniel Solís & Víctor Moreira López & José Maripani & Abdourahmane Thiam & Teodoro Rivas, 2007. "Technical efficiency in farming: a meta-regression analysis," Journal of Productivity Analysis, Springer, vol. 27(1), pages 57-72, February.
    5. Massimo Filippini & William Greene, 2016. "Persistent and transient productive inefficiency: a maximum simulated likelihood approach," Journal of Productivity Analysis, Springer, vol. 45(2), pages 187-196, April.
    6. Sickles, Robin C. & Hao, Jiaqi & Shang, Chenjun, 2015. "Panel Data and Productivity Measurement," Working Papers 15-018, Rice University, Department of Economics.
    7. Giannis Karagiannis & Magnus Kellermann, 2019. "Stochastic frontier models with correlated effects," Journal of Productivity Analysis, Springer, vol. 51(2), pages 175-187, June.
    8. Daniel Solís & Boris E. Bravo‐Ureta & Ricardo E. Quiroga, 2009. "Technical Efficiency among Peasant Farmers Participating in Natural Resource Management Programmes in Central America," Journal of Agricultural Economics, Wiley Blackwell, vol. 60(1), pages 202-219, February.
    9. Cullmann, Astrid & Farsi, Mehdi & Filippini Massimo, 2009. "Unobserved Heterogeneity and International Benchmarking in Public Trasport," Quaderni della facoltà di Scienze economiche dell'Università di Lugano 0904, USI Università della Svizzera italiana.
    10. Lajos Baráth & Imre Fertő & Heinrich Hockmann, 2020. "Technological Differences, Theoretical Consistency, and Technical Efficiency: The Case of Hungarian Crop-Producing Farms," Sustainability, MDPI, vol. 12(3), pages 1-18, February.
    11. Antonio Alvarez & Carlos Arias, 2014. "A selection of relevant issues in applied stochastic frontier analysis," Economics and Business Letters, Oviedo University Press, vol. 3(1), pages 3-11.
    12. Orea, Luis, 2019. "The Econometric Measurement of Firms’ Efficiency," Efficiency Series Papers 2019/02, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    13. Gralka, Sabine, 2018. "Stochastic frontier analysis in higher education: A systematic review," CEPIE Working Papers 05/18, Technische Universität Dresden, Center of Public and International Economics (CEPIE).
    14. Ahmad, Munir & Boris E., Bravo-Ureta, 1996. "Technical efficiency measures for dairy farms using panel data: a comparison of alternative model specifications," MPRA Paper 37703, University Library of Munich, Germany.
    15. Mehdi Farsi & Massimo Filippini & William Greene, 2005. "Efficiency Measurement in Network Industries: Application to the Swiss Railway Companies," Journal of Regulatory Economics, Springer, vol. 28(1), pages 69-90, July.
    16. Farsi, Mehdi & Filippini, Massimo & Kuenzle, Michael, 2007. "Cost efficiency in the Swiss gas distribution sector," Energy Economics, Elsevier, vol. 29(1), pages 64-78, January.
    17. Giannis Karagiannis & Vangelis Tzouvelekas, 1999. "Measuring Technical Efficiency with Panel Data: Results from Competing Models," Working Papers 9914, University of Crete, Department of Economics.
    18. Collier, Trevor & Johnson, Andrew L. & Ruggiero, John, 2011. "Technical efficiency estimation with multiple inputs and multiple outputs using regression analysis," European Journal of Operational Research, Elsevier, vol. 208(2), pages 153-160, January.
    19. Karagiannis, Giannis & Tzouvelekas, Vangelis, 2009. "Parametric Measurement of Time-Varying Technical Inefficiency: Results from Competing Models," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 10(1), pages 1-30.
    20. Luis R. Murillo‐Zamorano, 2004. "Economic Efficiency and Frontier Techniques," Journal of Economic Surveys, Wiley Blackwell, vol. 18(1), pages 33-77, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:arerjl:201353. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/nareaea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/nareaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.