IDEAS home Printed from https://ideas.repec.org/a/tpr/restat/v79y1997i1p116-124.html
   My bibliography  Save this article

Budget-Constrained Frontier Measures Of Fiscal Equality And Efficiency In Schooling

Author

Listed:
  • Shawna Grosskopf
  • Kathy J. Hayes
  • Lori L. Taylor
  • William L. Weber

Abstract

Equality and efficiency are key issues in educational reform. Here the authors analyze the efficiency and equality consequences of various school finance reforms using a cost-indirect output distance function. This function readily models multiple-output production under conditions of budgetary constraint, and provides a natural measure of performance that is closely related to Farrell-type measures of efficiency. The analysis suggests that despite school district inefficiency, finance reforms can affect student achievement. However, any potential gains in output from redistribution are dwarfed by the potential gains from increased efficiency. More strikingly, the analysis demonstrates that budgetary reforms designed to equalize expenditures could actually increase the inequality of student achievement. © 1997 by the President and Fellows of Harvard College and the Massachusetts Institute of Technology

Suggested Citation

  • Shawna Grosskopf & Kathy J. Hayes & Lori L. Taylor & William L. Weber, 1997. "Budget-Constrained Frontier Measures Of Fiscal Equality And Efficiency In Schooling," The Review of Economics and Statistics, MIT Press, vol. 79(1), pages 116-124, February.
  • Handle: RePEc:tpr:restat:v:79:y:1997:i:1:p:116-124
    as

    Download full text from publisher

    File URL: http://www.mitpressjournals.org/doi/pdf/10.1162/003465397556458
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gourieroux Christian & Monfort Alain & Trognon A, 1981. "Pseudo maximum likelihood methods : theory," CEPREMAP Working Papers (Couverture Orange) 8129, CEPREMAP.
    2. Delgado, Miguel A & Robinson, Peter M, 1992. " Nonparametric and Semiparametric Methods for Economic Research," Journal of Economic Surveys, Wiley Blackwell, vol. 6(3), pages 201-249.
    3. Gourieroux, Christian & Monfort, Alain & Trognon, Alain, 1984. "Pseudo Maximum Likelihood Methods: Applications to Poisson Models," Econometrica, Econometric Society, vol. 52(3), pages 701-720, May.
    4. Steven G. Allen, 1981. "Compensation, Safety, and Absenteeism: Evidence from the Paper Industry," ILR Review, Cornell University, ILR School, vol. 34(2), pages 207-218, January.
    5. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    6. Chamberlain, Gary, 1987. "Asymptotic efficiency in estimation with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 34(3), pages 305-334, March.
    7. Kahn, Shulamit & Lang, Kevin, 1988. "Efficient Estimation of Structural Hedonic Systems," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 29(1), pages 157-166, February.
    8. Robinson, P M, 1987. "Asymptotically Efficient Estimation in the Presence of Heteroskedasticity of Unknown Form," Econometrica, Econometric Society, vol. 55(4), pages 875-891, July.
    9. Brown, James N & Rosen, Harvey S, 1982. "On the Estimation of Structural Hedonic Price Models," Econometrica, Econometric Society, vol. 50(3), pages 765-768, May.
    10. Cameron, A Colin & Trivedi, Pravin K, 1986. "Econometric Models Based on Count Data: Comparisons and Applications of Some Estimators and Tests," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 1(1), pages 29-53, January.
    11. Cameron, A. Colin & Trivedi, Pravin K., 1990. "Regression-based tests for overdispersion in the Poisson model," Journal of Econometrics, Elsevier, vol. 46(3), pages 347-364, December.
    12. Hausman, Jerry & Hall, Bronwyn H & Griliches, Zvi, 1984. "Econometric Models for Count Data with an Application to the Patents-R&D Relationship," Econometrica, Econometric Society, vol. 52(4), pages 909-938, July.
    13. A. C. Cameron & P. K. Trivedi & Frank Milne & J. Piggott, 1988. "A Microeconometric Model of the Demand for Health Care and Health Insurance in Australia," Review of Economic Studies, Oxford University Press, vol. 55(1), pages 85-106.
    14. Gourieroux, Christian & Monfort, Alain & Trognon, Alain, 1984. "Pseudo Maximum Likelihood Methods: Theory," Econometrica, Econometric Society, vol. 52(3), pages 681-700, May.
    15. Delgado, Miguel A. & Robinson, Peter M., 1992. "Nonparametric and semiparametric methods for economic research," UC3M Working papers. Economics 2827, Universidad Carlos III de Madrid. Departamento de Economía.
    16. Epple, Dennis, 1987. "Hedonic Prices and Implicit Markets: Estimating Demand and Supply Functions for Differentiated Products," Journal of Political Economy, University of Chicago Press, vol. 95(1), pages 59-80, February.
    17. Allen, Steven G, 1981. "An Empirical Model of Work Attendance," The Review of Economics and Statistics, MIT Press, pages 77-87.
    18. Delgado, Miguel A., 1992. "Semiparametric Generalized Least Squares in the Multivariate Nonlinear Regression Model," Econometric Theory, Cambridge University Press, vol. 8(02), pages 203-222, June.
    19. White, Halbert, 1980. "Using Least Squares to Approximate Unknown Regression Functions," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 21(1), pages 149-170, February.
    20. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tpr:restat:v:79:y:1997:i:1:p:116-124. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Kristin Waites). General contact details of provider: http://mitpress.mit.edu/journals/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.