IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v284y2020i3p967-979.html
   My bibliography  Save this article

On a High-Dimensional Model Representation method based on Copulas

Author

Listed:
  • Tsionas, Mike G.
  • Andrikopoulos, Athanasios

Abstract

This article provides an alternative to High-Dimensional Model Representation using a Copula approximation of an unknown functional form. We apply our methodology in the context of an extensive Monte Carlo study and to a sample of large US commercial banks. In the Monte Carlo experiment, the approximations errors of the Copula approach are small and behave randomly. In our empirical application, we find that the Copula Approximation performs much better, in terms of Bayes factors for model comparison, compared to High-Dimensional Model Representation, which, in turn, provides better results when compared with standard flexible functional forms, like the translog, the minflex Laurent, and the Generalized Leontief, or a Multilayer Perceptron. Moreover, the choice of approximation has significant implications for productivity and its components (returns to scale, technical inefficiency, technical change, and efficiency change).

Suggested Citation

  • Tsionas, Mike G. & Andrikopoulos, Athanasios, 2020. "On a High-Dimensional Model Representation method based on Copulas," European Journal of Operational Research, Elsevier, vol. 284(3), pages 967-979.
  • Handle: RePEc:eee:ejores:v:284:y:2020:i:3:p:967-979
    DOI: 10.1016/j.ejor.2020.01.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720300473
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vivas, Ana Lozano, 1997. "Profit efficiency for Spanish savings banks," European Journal of Operational Research, Elsevier, vol. 98(2), pages 381-394, April.
    2. Genius, Margarita & Stefanou, Spiro E. & Tzouvelekas, Vangelis, 2012. "Measuring productivity growth under factor non-substitution: An application to US steam-electric power generation utilities," European Journal of Operational Research, Elsevier, vol. 220(3), pages 844-852.
    3. Berger, Allen N. & Mester, Loretta J., 2003. "Explaining the dramatic changes in performance of US banks: technological change, deregulation, and dynamic changes in competition," Journal of Financial Intermediation, Elsevier, vol. 12(1), pages 57-95, January.
    4. Torri, Gabriele & Giacometti, Rosella & Paterlini, Sandra, 2018. "Robust and sparse banking network estimation," European Journal of Operational Research, Elsevier, vol. 270(1), pages 51-65.
    5. Hughes, Joseph P. & Mester, Loretta J., 2013. "Who said large banks don’t experience scale economies? Evidence from a risk-return-driven cost function," Journal of Financial Intermediation, Elsevier, vol. 22(4), pages 559-585.
    6. Dong, Yizhe & Firth, Michael & Hou, Wenxuan & Yang, Weiwei, 2016. "Evaluating the performance of Chinese commercial banks: A comparative analysis of different types of banks," European Journal of Operational Research, Elsevier, vol. 252(1), pages 280-295.
    7. Leopold Simar & Valentin Zelenyuk, 2006. "On Testing Equality of Distributions of Technical Efficiency Scores," Econometric Reviews, Taylor & Francis Journals, vol. 25(4), pages 497-522.
    8. Mester, Loretta J., 1997. "Measuring efficiency at U.S. banks: Accounting for heterogeneity is important," European Journal of Operational Research, Elsevier, vol. 98(2), pages 230-242, April.
    9. Berger, Allen N. & Mester, Loretta J., 1997. "Inside the black box: What explains differences in the efficiencies of financial institutions?," Journal of Banking & Finance, Elsevier, vol. 21(7), pages 895-947, July.
    10. Joseph P. Hughes & Loretta J. Mester, 1998. "Bank Capitalization And Cost: Evidence Of Scale Economies In Risk Management And Signaling," The Review of Economics and Statistics, MIT Press, vol. 80(2), pages 314-325, May.
    11. Michaelides, Panayotis G. & Vouldis, Angelos T. & Tsionas, Efthymios G., 2010. "Globally flexible functional forms: The neural distance function," European Journal of Operational Research, Elsevier, vol. 206(2), pages 456-469, October.
    12. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    13. Tsionas, Mike G., 2020. "A coherent approach to Bayesian Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 281(2), pages 439-448.
    14. Barnett, William A. & Lee, Yul W. & Wolfe, Michael D., 1985. "The three-dimensional global properties of the minflex laurent, generalized leontief, and translog flexible functional forms," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 3-31.
    15. Sun, Kai & Kumbhakar, Subal C. & Tveterås, Ragnar, 2015. "Productivity and efficiency estimation: A semiparametric stochastic cost frontier approach," European Journal of Operational Research, Elsevier, vol. 245(1), pages 194-202.
    16. Tzeremes, Nickolaos G., 2015. "Efficiency dynamics in Indian banking: A conditional directional distance approach," European Journal of Operational Research, Elsevier, vol. 240(3), pages 807-818.
    17. Michaelides, Panayotis G. & Tsionas, Efthymios G. & Vouldis, Angelos T. & Konstantakis, Konstantinos N., 2015. "Global approximation to arbitrary cost functions: A Bayesian approach with application to US banking," European Journal of Operational Research, Elsevier, vol. 241(1), pages 148-160.
    18. Tecles, Patricia Langsch & Tabak, Benjamin M., 2010. "Determinants of bank efficiency: The case of Brazil," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1587-1598, December.
    19. Desai, Vijay S. & Crook, Jonathan N. & Overstreet, George A., 1996. "A comparison of neural networks and linear scoring models in the credit union environment," European Journal of Operational Research, Elsevier, vol. 95(1), pages 24-37, November.
    20. Sathye, Milind, 2003. "Efficiency of banks in a developing economy: The case of India," European Journal of Operational Research, Elsevier, vol. 148(3), pages 662-671, August.
    21. Ray, Subhash C. & Das, Abhiman, 2010. "Distribution of cost and profit efficiency: Evidence from Indian banking," European Journal of Operational Research, Elsevier, vol. 201(1), pages 297-307, February.
    22. Bernardo Maggi & Marco Guida, 2011. "Modelling non-performing loans probability in the commercial banking system: efficiency and effectiveness related to credit risk in Italy," Empirical Economics, Springer, vol. 41(2), pages 269-291, October.
    23. Gallant, A. Ronald, 1981. "On the bias in flexible functional forms and an essentially unbiased form : The fourier flexible form," Journal of Econometrics, Elsevier, vol. 15(2), pages 211-245, February.
    24. Wanke, Peter & Barros, Carlos P. & Faria, João R., 2015. "Financial distress drivers in Brazilian banks: A dynamic slacks approach," European Journal of Operational Research, Elsevier, vol. 240(1), pages 258-268.
    25. Tsionas, Mike G. & Mallick, Sushanta K., 2019. "A Bayesian semiparametric approach to stochastic frontiers and productivity," European Journal of Operational Research, Elsevier, vol. 274(1), pages 391-402.
    26. Badunenko, Oleg & Kumbhakar, Subal C., 2017. "Economies of scale, technical change and persistent and time-varying cost efficiency in Indian banking: Do ownership, regulation and heterogeneity matter?," European Journal of Operational Research, Elsevier, vol. 260(2), pages 789-803.
    27. Diewert, Walter E & Wales, Terence J, 1987. "Flexible Functional Forms and Global Curvature Conditions," Econometrica, Econometric Society, vol. 55(1), pages 43-68, January.
    28. Kumbhakar, Subal C., 2011. "Estimation of production technology when the objective is to maximize return to the outlay," European Journal of Operational Research, Elsevier, vol. 208(2), pages 170-176, January.
    29. Bos, J.W.B. & Koetter, M. & Kolari, J.W. & Kool, C.J.M., 2009. "Effects of heterogeneity on bank efficiency scores," European Journal of Operational Research, Elsevier, vol. 195(1), pages 251-261, May.
    30. Diewert, W E, 1971. "An Application of the Shephard Duality Theorem: A Generalized Leontief Production Function," Journal of Political Economy, University of Chicago Press, vol. 79(3), pages 481-507, May-June.
    31. Kumbhakar, Subal C. & Tsionas, Efthymios G., 2016. "The good, the bad and the technology: Endogeneity in environmental production models," Journal of Econometrics, Elsevier, vol. 190(2), pages 315-327.
    32. Beccacece, Francesca & Borgonovo, Emanuele & Buzzard, Greg & Cillo, Alessandra & Zionts, Stanley, 2015. "Elicitation of multiattribute value functions through high dimensional model representations: Monotonicity and interactions," European Journal of Operational Research, Elsevier, vol. 246(2), pages 517-527.
    33. Galán, Jorge E. & Veiga, Helena & Wiper, Michael P., 2015. "Dynamic effects in inefficiency: Evidence from the Colombian banking sector," European Journal of Operational Research, Elsevier, vol. 240(2), pages 562-571.
    34. Olesen, Ole B. & Petersen, Niels Christian, 2016. "Stochastic Data Envelopment Analysis—A review," European Journal of Operational Research, Elsevier, vol. 251(1), pages 2-21.
    35. G P Zhang & V L Berardi, 2001. "Time series forecasting with neural network ensembles: an application for exchange rate prediction," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(6), pages 652-664, June.
    36. Guohua Feng & Apostolos Serletis, 2009. "Efficiency and productivity of the US banking industry, 1998-2005: evidence from the Fourier cost function satisfying global regularity conditions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(1), pages 105-138.
    37. Kumbhakar, Subal C., 2013. "Specification and estimation of multiple output technologies: A primal approach," European Journal of Operational Research, Elsevier, vol. 231(2), pages 465-473.
    38. Hall, Robert E, 1973. "The Specification of Technology with Several Kinds of Output," Journal of Political Economy, University of Chicago Press, vol. 81(4), pages 878-892, July-Aug..
    39. Barnett, William A. & Lee, Yul W., 1987. "The Laurent series approach to structural modeling," European Journal of Operational Research, Elsevier, vol. 30(3), pages 270-279, June.
    40. Tsionas, Efthymios G., 2003. "Combining DEA and stochastic frontier models: An empirical Bayes approach," European Journal of Operational Research, Elsevier, vol. 147(3), pages 499-510, June.
    41. Tsionas, Mike G. & Izzeldin, Marwan, 2018. "A novel model of costly technical efficiency," European Journal of Operational Research, Elsevier, vol. 268(2), pages 653-664.
    42. Lovell, C. A. Knox, 1995. "Econometric efficiency analysis: A policy-oriented review," European Journal of Operational Research, Elsevier, vol. 80(3), pages 452-461, February.
    43. Emir Malikov & Subal C. Kumbhakar & Mike G. Tsionas, 2016. "A Cost System Approach to the Stochastic Directional Technology Distance Function with Undesirable Outputs: The Case of us Banks in 2001–2010," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1407-1429, November.
    44. Koutsomanoli-Filippaki, Anastasia & Mamatzakis, Emmanuel, 2009. "Performance and Merton-type default risk of listed banks in the EU: A panel VAR approach," Journal of Banking & Finance, Elsevier, vol. 33(11), pages 2050-2061, November.
    45. Barnett, William A & Lee, Yul W, 1985. "The Global Properties of the Miniflex Laurent, Generalized Leontief, and Translog Flexible Functional Forms," Econometrica, Econometric Society, vol. 53(6), pages 1421-1437, November.
    46. Faugeras, Olivier P., 2013. "Sklar’s theorem derived using probabilistic continuation and two consistency results," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 271-277.
    47. Simar, Leopold & Wilson, Paul W., 2007. "Estimation and inference in two-stage, semi-parametric models of production processes," Journal of Econometrics, Elsevier, vol. 136(1), pages 31-64, January.
    48. Kakouris, Iakovos & Rustem, Berç, 2014. "Robust portfolio optimization with copulas," European Journal of Operational Research, Elsevier, vol. 235(1), pages 28-37.
    49. Mark Girolami & Ben Calderhead, 2011. "Riemann manifold Langevin and Hamiltonian Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(2), pages 123-214, March.
    50. Sealey, Calvin W, Jr & Lindley, James T, 1977. "Inputs, Outputs, and a Theory of Production and Cost at Depository Financial Institutions," Journal of Finance, American Finance Association, vol. 32(4), pages 1251-1266, September.
    51. Tong Li & Robert Rosenman, 2001. "Estimating hospital costs with a generalized Leontief function," Health Economics, John Wiley & Sons, Ltd., vol. 10(6), pages 523-538, September.
    52. Yanqin Fan & Andrew J. Patton, 2014. "Copulas in Econometrics," Annual Review of Economics, Annual Reviews, vol. 6(1), pages 179-200, August.
    53. Dellaportas, Petros & Tsionas, Mike G., 2019. "Importance sampling from posterior distributions using copula-like approximations," Journal of Econometrics, Elsevier, vol. 210(1), pages 45-57.
    54. Ser-Huang Poon, 2004. "Extreme Value Dependence in Financial Markets: Diagnostics, Models, and Financial Implications," Review of Financial Studies, Society for Financial Studies, vol. 17(2), pages 581-610.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tsionas, Mike G. & Izzeldin, Marwan, 2018. "Smooth approximations to monotone concave functions in production analysis: An alternative to nonparametric concave least squares," European Journal of Operational Research, Elsevier, vol. 271(3), pages 797-807.
    2. Sarmiento, Miguel & Galán, Jorge E., 2017. "The influence of risk-taking on bank efficiency: Evidence from Colombia," Emerging Markets Review, Elsevier, vol. 32(C), pages 52-73.
    3. Mamatzakis, Emmanuel & matousek, roman & vu, anh, 2019. "The interplay between problem loans and Japanese bank productivity," MPRA Paper 92960, University Library of Munich, Germany.
    4. Mike G. Tsionas, 2017. "“When, Where, and How” of Efficiency Estimation: Improved Procedures for Stochastic Frontier Modeling," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 948-965, July.
    5. Dong, Yizhe & Firth, Michael & Hou, Wenxuan & Yang, Weiwei, 2016. "Evaluating the performance of Chinese commercial banks: A comparative analysis of different types of banks," European Journal of Operational Research, Elsevier, vol. 252(1), pages 280-295.
    6. Mohammad Shahid Zaman & Anup Kumar Bhandari, 2020. "Financial deregulation, competition and cost efficiency of Indian commercial banks: is there any convergence?," Indian Economic Review, Springer, vol. 55(2), pages 283-312, December.
    7. Tsionas, Mike G., 2017. "Microfoundations for stochastic frontiers," European Journal of Operational Research, Elsevier, vol. 258(3), pages 1165-1170.
    8. Mark Jensen, 1997. "Revisiting the flexibility and regularity properties of the asymptotically ideal production model," Econometric Reviews, Taylor & Francis Journals, vol. 16(2), pages 179-203.
    9. Emir Malikov & Diego Restrepo-Tobón & Subal Kumbhakar, 2015. "Estimation of banking technology under credit uncertainty," Empirical Economics, Springer, vol. 49(1), pages 185-211, August.
    10. Tsionas, Mike G. & Izzeldin, Marwan, 2018. "A novel model of costly technical efficiency," European Journal of Operational Research, Elsevier, vol. 268(2), pages 653-664.
    11. Tsionas, Mike G., 2017. "The profit function system with output- and input-specific technical efficiency," Economics Letters, Elsevier, vol. 151(C), pages 111-114.
    12. Tsionas, Efthymios G. & Malikov, Emir & Kumbhakar, Subal C., 2018. "An internally consistent approach to the estimation of market power and cost efficiency with an application to U.S. banking," European Journal of Operational Research, Elsevier, vol. 270(2), pages 747-760.
    13. Galán, Jorge E. & Veiga, Helena & Wiper, Michael P., 2015. "Dynamic effects in inefficiency: Evidence from the Colombian banking sector," European Journal of Operational Research, Elsevier, vol. 240(2), pages 562-571.
    14. Emir Malikov & Subal C. Kumbhakar & Mike G. Tsionas, 2016. "A Cost System Approach to the Stochastic Directional Technology Distance Function with Undesirable Outputs: The Case of us Banks in 2001–2010," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1407-1429, November.
    15. Diego Restrepo-Tobón & Subal Kumbhakar & Kai Sun, 2015. "Obelix vs. Asterix: Size of US commercial banks and its regulatory challenge," Journal of Regulatory Economics, Springer, vol. 48(2), pages 125-168, October.
    16. Goddard, John & Molyneux, Philip & Williams, Jonathan, 2014. "Dealing with cross-firm heterogeneity in bank efficiency estimates: Some evidence from Latin America," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 130-142.
    17. Assaf, A. George & Berger, Allen N. & Roman, Raluca A. & Tsionas, Mike G., 2019. "Does efficiency help banks survive and thrive during financial crises?," Journal of Banking & Finance, Elsevier, vol. 106(C), pages 445-470.
    18. Subhash C. Ray & Abhiman Das & Kankana Mukherjee, 2018. "Measures of Labor Use Efficiency from a Cost-Based Dual Representation of the Technology: A Study of Indian Bank Branches," Working papers 2018-17, University of Connecticut, Department of Economics.
    19. William Barnett & Ousmane Seck, 2006. "Rotterdam vs Almost Ideal Models: Will the Best Demand Specification Please Stand Up?," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 200605, University of Kansas, Department of Economics.
    20. Richard Simper & Maximilian J. B. Hall & WenBin Liu & Valentin Zelenyuk & Zhongbao Zhou, 2017. "How relevant is the choice of risk management control variable to non-parametric bank profit efficiency analysis? The case of South Korean banks," Annals of Operations Research, Springer, vol. 250(1), pages 105-127, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:284:y:2020:i:3:p:967-979. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Nithya Sathishkumar). General contact details of provider: http://www.elsevier.com/locate/eor .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.