IDEAS home Printed from
   My bibliography  Save this article

Measuring productivity growth under factor non-substitution: An application to US steam-electric power generation utilities


  • Genius, Margarita
  • Stefanou, Spiro E.
  • Tzouvelekas, Vangelis


A theoretical framework is developed for decomposing partial factor productivity and measuring technical inefficiency when the underlying technology is characterized by factor non-substitution. With Farrell’s (1957) radial index of technical inefficiency being inappropriate in this case, Russell non-radial indices are adapted to measure technical inefficiency in a Leontief-type model. A system of factor demand equations with a regime specific technical inefficiency term is proposed and estimated allowing for dependence across inputs using a copula approach. Then the paper presents a complete decomposition of partial factor productivity changes using a dataset of US steam-power electric generation utilities.

Suggested Citation

  • Genius, Margarita & Stefanou, Spiro E. & Tzouvelekas, Vangelis, 2012. "Measuring productivity growth under factor non-substitution: An application to US steam-electric power generation utilities," European Journal of Operational Research, Elsevier, vol. 220(3), pages 844-852.
  • Handle: RePEc:eee:ejores:v:220:y:2012:i:3:p:844-852 DOI: 10.1016/j.ejor.2012.02.023

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Darold Barnum & John Gleason, 2011. "Measuring efficiency under fixed proportion technologies," Journal of Productivity Analysis, Springer, vol. 35(3), pages 243-262, June.
    2. Martin van Ittersum & Ada Wossink, 2006. "Integrating Agronomic Principles into Production Function Specification: A Dichotomy of Growth Inputs and Facilitating Inputs," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 88(1), pages 203-214.
    3. Hulten, Charles R, 1973. "Divisia Index Numbers," Econometrica, Econometric Society, vol. 41(6), pages 1017-1025, November.
    4. Torben Holvad & Jens Hougaard & Dorte Kronborg & Hans Kvist, 2004. "Measuring inefficiency in the Norwegian bus industry using multi-directional efficiency analysis," Transportation, Springer, vol. 31(3), pages 349-369, August.
    5. Silva Portela, Maria Conceicao A. & Thanassoulis, Emmanuel, 2005. "Profitability of a sample of Portuguese bank branches and its decomposition into technical and allocative components," European Journal of Operational Research, Elsevier, vol. 162(3), pages 850-866, May.
    6. Atkinson, Scott E. & Primont, Daniel, 2002. "Stochastic estimation of firm technology, inefficiency, and productivity growth using shadow cost and distance functions," Journal of Econometrics, Elsevier, vol. 108(2), pages 203-225, June.
    7. Rungsuriyawiboon, Supawat & Stefanou, Spiro E., 2007. "Dynamic Efficiency Estimation: An Application to U.S. Electric Utilities," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 226-238, April.
    8. Trivedi, Pravin K. & Zimmer, David M., 2007. "Copula Modeling: An Introduction for Practitioners," Foundations and Trends(R) in Econometrics, now publishers, vol. 1(1), pages 1-111, April.
    9. Cherchye, Laurens & Van Puyenbroeck, Tom, 2009. "Semi-radial technical efficiency measurement," European Journal of Operational Research, Elsevier, vol. 193(2), pages 616-625, March.
    10. John Haldi & David Whitcomb, 1967. "Economies of Scale in Industrial Plants," Journal of Political Economy, University of Chicago Press, vol. 75, pages 373-373.
    11. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    12. Clarke, Kevin A., 2007. "A Simple Distribution-Free Test for Nonnested Model Selection," Political Analysis, Cambridge University Press, vol. 15(03), pages 347-363, June.
    13. Reifschneider, David & Stevenson, Rodney, 1991. "Systematic Departures from the Frontier: A Framework for the Analysis of Firm Inefficiency," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 32(3), pages 715-723, August.
    14. Raymond J. Kopp, 1981. "The Measurement of Productive Efficiency: A Reconsideration," The Quarterly Journal of Economics, Oxford University Press, vol. 96(3), pages 477-503.
    15. Kodde, David A & Palm, Franz C, 1986. "Wald Criteria for Jointly Testing Equality and Inequality Restriction s," Econometrica, Econometric Society, vol. 54(5), pages 1243-1248, September.
    16. Steven Buccola & Jayashree Sil, 1996. "Productivity Measurement in the Agricultural Marketing Sector," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(5), pages 1366-1371.
    17. Boris Bravo-Ureta & Daniel Solís & Víctor Moreira López & José Maripani & Abdourahmane Thiam & Teodoro Rivas, 2007. "Technical efficiency in farming: a meta-regression analysis," Journal of Productivity Analysis, Springer, vol. 27(1), pages 57-72, February.
    18. Granderson, Gerald & Linvill, Carl, 2002. "Regulation, efficiency, and Granger causality," International Journal of Industrial Organization, Elsevier, vol. 20(9), pages 1225-1245, November.
    19. L. Dean Hiebert, 2002. "The Determinants of the Cost Efficiency of Electric Generating Plants: A Stochastic Frontier Approach," Southern Economic Journal, Southern Economic Association, vol. 68(4), pages 935-946, April.
    20. Robert Russell, R., 1985. "Measures of technical efficiency," Journal of Economic Theory, Elsevier, vol. 35(1), pages 109-126, February.
    21. Nakamura, Shinichiro, 1990. "A Nonhomothetic Generalized Leontief Cost Function Based on Pooled Data," The Review of Economics and Statistics, MIT Press, vol. 72(4), pages 649-656, November.
    22. Garth Holloway & Quirino Paris, 2002. "Production Efficiency in the von Liebig Model," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 84(5), pages 1271-1278.
    23. Athanassopoulos, Antreas D. & Lambroukos, Nikos & Seiford, Lawrence, 1999. "Data envelopment scenario analysis for setting targets to electricity generating plants," European Journal of Operational Research, Elsevier, vol. 115(3), pages 413-428, June.
    24. Fare, Rolf & Knox Lovell, C. A., 1978. "Measuring the technical efficiency of production," Journal of Economic Theory, Elsevier, vol. 19(1), pages 150-162, October.
    25. Silberberg, Eugene, 1972. "Duality and the Many Consumer's Surpluses," American Economic Review, American Economic Association, vol. 62(5), pages 942-952, December.
    26. Lindebo, Erik & Hoff, Ayoe & Vestergaard, Niels, 2007. "Revenue-based capacity utilisation measures and decomposition: The case of Danish North Sea trawlers," European Journal of Operational Research, Elsevier, vol. 180(1), pages 215-227, July.
    27. Battese, G E & Coelli, T J, 1995. "A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data," Empirical Economics, Springer, vol. 20(2), pages 325-332.
    28. Lau, Lawrence J & Tamura, Shuji, 1972. "Economies of Scale, Technical Progress, and the Nonhomothetic Leontief Production Function: An Application to the Japanese Petrochemical Processing Industry," Journal of Political Economy, University of Chicago Press, vol. 80(6), pages 1167-1187, Nov.-Dec..
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Seifert, Stefan, 2015. "Productivity Growth and its Sources - A StoNED Metafrontier Analyis of the German Electricity Generating Sector," Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 112975, Verein für Socialpolitik / German Economic Association.
    2. Stefan Seifert, 2015. "Measuring Productivity When Technologies Are Heterogeneous: A Semi-Parametric Approach for Electricity Generation," Discussion Papers of DIW Berlin 1526, DIW Berlin, German Institute for Economic Research.
    3. Yamane, Yasuo & Takahashi, Katsuhiko & Hamada, Kunihiro & Morikawa, Katsumi & Nur Bahagia, Senator & Diawati, Lucia & Cakravastia, Andi, 2015. "Developing a plant system prediction model for technology transfer," International Journal of Production Economics, Elsevier, vol. 166(C), pages 119-128.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:220:y:2012:i:3:p:844-852. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.