IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v122y2013icp271-277.html
   My bibliography  Save this article

Sklar’s theorem derived using probabilistic continuation and two consistency results

Author

Listed:
  • Faugeras, Olivier P.

Abstract

We give a purely probabilistic proof of Sklar’s theorem by using a simple continuation technique and sequential arguments. We then consider the case where the distribution function F is unknown but one observes instead a sample of i.i.d. copies distributed according to F: we construct a sequence of copula representers associated with the empirical distribution function of the sample which convergences a.s. to the representer of the copula function associated with F. Eventually, we are surprisingly able to extend the last theorem to the case where the marginals of F are discontinuous.

Suggested Citation

  • Faugeras, Olivier P., 2013. "Sklar’s theorem derived using probabilistic continuation and two consistency results," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 271-277.
  • Handle: RePEc:eee:jmvana:v:122:y:2013:i:c:p:271-277
    DOI: 10.1016/j.jmva.2013.07.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X13001425
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2013.07.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Genest, Christian & Nešlehová, Johanna, 2007. "A Primer on Copulas for Count Data," ASTIN Bulletin, Cambridge University Press, vol. 37(2), pages 475-515, November.
    2. Vaart,A. W. van der, 2000. "Asymptotic Statistics," Cambridge Books, Cambridge University Press, number 9780521784504.
    3. Denuit, Michel & Lambert, Philippe, 2005. "Constraints on concordance measures in bivariate discrete data," Journal of Multivariate Analysis, Elsevier, vol. 93(1), pages 40-57, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Faugeras Olivier P., 2017. "Inference for copula modeling of discrete data: a cautionary tale and some facts," Dependence Modeling, De Gruyter, vol. 5(1), pages 121-132, January.
    2. Šeliga Adam & Kauers Manuel & Saminger-Platz Susanne & Mesiar Radko & Kolesárová Anna & Klement Erich Peter, 2021. "Polynomial bivariate copulas of degree five: characterization and some particular inequalities," Dependence Modeling, De Gruyter, vol. 9(1), pages 13-42, January.
    3. Saminger-Platz Susanne & Kolesárová Anna & Šeliga Adam & Mesiar Radko & Klement Erich Peter, 2021. "New results on perturbation-based copulas," Dependence Modeling, De Gruyter, vol. 9(1), pages 347-373, January.
    4. Tsionas, Mike G. & Andrikopoulos, Athanasios, 2020. "On a High-Dimensional Model Representation method based on Copulas," European Journal of Operational Research, Elsevier, vol. 284(3), pages 967-979.
    5. Faugeras, Olivier P., 2015. "Maximal coupling of empirical copulas for discrete vectors," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 179-186.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aristidis Nikoloulopoulos & Dimitris Karlis, 2010. "Regression in a copula model for bivariate count data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(9), pages 1555-1568.
    2. Geenens Gery, 2020. "Copula modeling for discrete random vectors," Dependence Modeling, De Gruyter, vol. 8(1), pages 417-440, January.
    3. Fokianos, Konstantinos & Fried, Roland & Kharin, Yuriy & Voloshko, Valeriy, 2022. "Statistical analysis of multivariate discrete-valued time series," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    4. Siem Jan Koopman & Rutger Lit & André Lucas & Anne Opschoor, 2018. "Dynamic discrete copula models for high‐frequency stock price changes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(7), pages 966-985, November.
    5. Fantazzini, Dean, 2020. "Discussing copulas with Sergey Aivazian: a memoir," MPRA Paper 102317, University Library of Munich, Germany.
    6. Tzougas, George & Makariou, Despoina, 2022. "The multivariate Poisson-Generalized Inverse Gaussian claim count regression model with varying dispersion and shape parameters," LSE Research Online Documents on Economics 117197, London School of Economics and Political Science, LSE Library.
    7. Pravin Trivedi & David Zimmer, 2017. "A Note on Identification of Bivariate Copulas for Discrete Count Data," Econometrics, MDPI, vol. 5(1), pages 1-11, February.
    8. Mothafer, Ghasak I.M.A. & Yamamoto, Toshiyuki & Shankar, Venkataraman N., 2018. "A multivariate heterogeneous-dispersion count model for asymmetric interdependent freeway crash types," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 84-105.
    9. L. L. Henn, 2022. "Limitations and performance of three approaches to Bayesian inference for Gaussian copula regression models of discrete data," Computational Statistics, Springer, vol. 37(2), pages 909-946, April.
    10. Jong-Min Kim & Hyunsu Ju & Yoonsung Jung, 2020. "Copula Approach for Developing a Biomarker Panel for Prediction of Dengue Hemorrhagic Fever," Annals of Data Science, Springer, vol. 7(4), pages 697-712, December.
    11. Nagler, Thomas, 2018. "A generic approach to nonparametric function estimation with mixed data," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 326-330.
    12. Jonas Moss & Steffen Grønneberg, 2023. "Partial Identification of Latent Correlations with Ordinal Data," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 241-252, March.
    13. Smith, Michael Stanley, 2023. "Implicit Copulas: An Overview," Econometrics and Statistics, Elsevier, vol. 28(C), pages 81-104.
    14. Zilko, Aurelius A. & Kurowicka, Dorota, 2016. "Copula in a multivariate mixed discrete–continuous model," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 28-55.
    15. Xiaotian Zheng & Athanasios Kottas & Bruno Sansó, 2023. "Bayesian geostatistical modeling for discrete‐valued processes," Environmetrics, John Wiley & Sons, Ltd., vol. 34(7), November.
    16. Geenens Gery, 2020. "Copula modeling for discrete random vectors," Dependence Modeling, De Gruyter, vol. 8(1), pages 417-440, January.
    17. Michael Stanley Smith, 2021. "Implicit Copulas: An Overview," Papers 2109.04718, arXiv.org.
    18. Shi, Peng & Valdez, Emiliano A., 2014. "Multivariate negative binomial models for insurance claim counts," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 18-29.
    19. Genest, Christian & Nešlehová, Johanna G. & Rémillard, Bruno, 2013. "On the estimation of Spearman’s rho and related tests of independence for possibly discontinuous multivariate data," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 214-228.
    20. Genest, Christian & Nešlehová, Johanna G. & Rémillard, Bruno, 2017. "Asymptotic behavior of the empirical multilinear copula process under broad conditions," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 82-110.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:122:y:2013:i:c:p:271-277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.