IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v54y2003i3d10.1057_palgrave.jors.2601523.html
   My bibliography  Save this article

Forecasting and recombining time-series components by using neural networks

Author

Listed:
  • J V Hansen

    (Marriott School, Brigham Young University)

  • R D Nelson

    (Marriott School, Brigham Young University)

Abstract

Operations and other business decisions often depend on accurate time-series forecasts. These time series usually consist of trend-cycle, seasonal, and irregular components. Existing methodologies attempt to first identify and then extrapolate these components to produce forecasts. The proposed process partners this decomposition procedure with neural network methodologies to combine the strengths of economics, statistics, and machine learning research. Stacked generalization first uses transformations and decomposition to pre-process a time series. Then a time-delay neural network receives the resulting components as inputs. The outputs of this neural network are then input to a backpropagation algorithm that synthesizes the processed components into a single forecast. Genetic algorithms guide the architecture selection for both the time-delay and backpropagation neural networks. The empirical examples used in this study reveal that the combination of transformation, feature extraction, and neural networks through stacked generalization gives more accurate forecasts than classical decomposition or ARIMA models. Scope and Purpose. The research reported in this paper examines two concurrent issues. The first evaluates the performance of neural networks in forecasting time series. The second assesses the use of stacked generalization as a way of refining this process. The methodology is applied to four economic and business time series. Those studying time series and neural networks, particularly in terms of combining tools from the statistical community with neural network technology, will find this paper relevant.

Suggested Citation

  • J V Hansen & R D Nelson, 2003. "Forecasting and recombining time-series components by using neural networks," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(3), pages 307-317, March.
  • Handle: RePEc:pal:jorsoc:v:54:y:2003:i:3:d:10.1057_palgrave.jors.2601523
    DOI: 10.1057/palgrave.jors.2601523
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/palgrave.jors.2601523
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/palgrave.jors.2601523?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    2. Breusch, T S & Pagan, A R, 1979. "A Simple Test for Heteroscedasticity and Random Coefficient Variation," Econometrica, Econometric Society, vol. 47(5), pages 1287-1294, September.
    3. Diebold, Francis X & Rudebusch, Glenn D, 1996. "Measuring Business Cycles: A Modern Perspective," The Review of Economics and Statistics, MIT Press, vol. 78(1), pages 67-77, February.
    4. Tim Hill & Marcus O'Connor & William Remus, 1996. "Neural Network Models for Time Series Forecasts," Management Science, INFORMS, vol. 42(7), pages 1082-1092, July.
    5. Selwyn Piramuthu & Harish Ragavan & Michael J. Shaw, 1998. "Using Feature Construction to Improve the Performance of Neural Networks," Management Science, INFORMS, vol. 44(3), pages 416-430, March.
    6. Arthur F. Burns & Wesley C. Mitchell, 1946. "Measuring Business Cycles," NBER Books, National Bureau of Economic Research, Inc, number burn46-1, March.
    7. McDonald, James B. & Xu, Yexiao, 1994. "Some forecasting applications of partially adaptive estimators of ARIMA models," Economics Letters, Elsevier, vol. 45(2), pages 155-160, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vouldis, Angelos T. & Michaelides, Panayotis G. & Tsionas, Efthymios G., 2010. "Estimating semi-parametric output distance functions with neural-based reduced form equations using LIML," Economic Modelling, Elsevier, vol. 27(3), pages 697-704, May.
    2. R Setiono & S-L Pan & M-H Hsieh & A Azcarraga, 2006. "Knowledge acquisition and revision using neural networks: an application to a cross-national study of brand image perception," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(3), pages 231-240, March.
    3. Michaelides, Panayotis G. & Vouldis, Angelos T. & Tsionas, Efthymios G., 2010. "Globally flexible functional forms: The neural distance function," European Journal of Operational Research, Elsevier, vol. 206(2), pages 456-469, October.
    4. J V Hansen & J B McDonald & R D Nelson, 2006. "Some evidence on forecasting time-series with support vector machines," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(9), pages 1053-1063, September.
    5. F Caniato & M Kalchschmidt & S Ronchi, 2011. "Integrating quantitative and qualitative forecasting approaches: organizational learning in an action research case," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(3), pages 413-424, March.
    6. Hector F. Calvo-Pardo & Tullio Mancini & Jose Olmo, 2020. "Neural Network Models for Empirical Finance," JRFM, MDPI, vol. 13(11), pages 1-22, October.
    7. Elsy Gómez-Ramos & Francisco Venegas-Martínez, 2013. "A Review of Artificial Neural Networks: How Well Do They Perform in Forecasting Time Series?," Analítika, Analítika - Revista de Análisis Estadístico/Journal of Statistical Analysis, vol. 6(2), pages 7-15, Diciembre.
    8. Zhang, G. Peter & Qi, Min, 2005. "Neural network forecasting for seasonal and trend time series," European Journal of Operational Research, Elsevier, vol. 160(2), pages 501-514, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vadim Kufenko & Niels Geiger, 2017. "Stylized Facts of the Business Cycle: Universal Phenomenon, or Institutionally Determined?," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 13(2), pages 165-187, November.
    2. J V Hansen & J B McDonald & R D Nelson, 2006. "Some evidence on forecasting time-series with support vector machines," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(9), pages 1053-1063, September.
    3. Siem Jan Koopman & Joao Valle e Azevedo, 2003. "Measuring Synchronisation and Convergence of Business Cycles," Tinbergen Institute Discussion Papers 03-052/4, Tinbergen Institute.
    4. Marijke Verpoorten & Lode Berlage, 2004. "Genocide and land scarcity: Can Rwandan rural households manage?," CSAE Working Paper Series 2004-15, Centre for the Study of African Economies, University of Oxford.
    5. Konstantin A. Kholodilin, 2006. "Using the Dynamic Bi-Factor Model with Markov Switching to Predict the Cyclical Turns in the Large European Economies," Discussion Papers of DIW Berlin 554, DIW Berlin, German Institute for Economic Research.
    6. Russell, Bill & Chowdhury, Rosen Azad, 2013. "Estimating United States Phillips curves with expectations consistent with the statistical process of inflation," Journal of Macroeconomics, Elsevier, vol. 35(C), pages 24-38.
    7. Joachim Zietz, 2006. "Detecting neglected parameter heterogeneity with Chow tests," Applied Economics Letters, Taylor & Francis Journals, vol. 13(6), pages 369-374.
    8. Pedro Delicado & Juan Romo, 1998. "Constant coefficient tests for random coefficient regression," Economics Working Papers 329, Department of Economics and Business, Universitat Pompeu Fabra.
    9. Kendix, Michael & Walls, W.D., 2010. "Oil industry consolidation and refined product prices: Evidence from US wholesale gasoline terminals," Energy Policy, Elsevier, vol. 38(7), pages 3498-3507, July.
    10. Olivier Darné & Laurent Ferrara, 2011. "Identification of Slowdowns and Accelerations for the Euro Area Economy," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 73(3), pages 335-364, June.
    11. Seren Firat & Esat Dasdemir, 2021. "Application of Quantity Theory of Money in Cryptocurrencies: Example of Bitcoin and the Impact of Covid-19," Istanbul Journal of Economics-Istanbul Iktisat Dergisi, Istanbul University, Faculty of Economics, vol. 71(1), pages 81-102, June.
    12. Chang-Jin Kim & Jeremy M. Piger & Richard Startz, 2001. "Permanent and transitory components of business cycles: their relative importance and dynamic relationship," International Finance Discussion Papers 703, Board of Governors of the Federal Reserve System (U.S.).
    13. LE GALLO, Julie, 2000. "Econométrie spatiale 2 -Hétérogénéité spatiale," LATEC - Document de travail - Economie (1991-2003) 2001-01, LATEC, Laboratoire d'Analyse et des Techniques EConomiques, CNRS UMR 5118, Université de Bourgogne.
    14. David I Stern, 2014. "High-Ranked Social Science Journal Articles Can Be Identified from Early Citation Information," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-11, November.
    15. Terence C. Mills & Ping Wang, 2003. "Multivariate Markov Switching Common Factor Models for the UK," Bulletin of Economic Research, Wiley Blackwell, vol. 55(2), pages 177-193, April.
    16. M Sensier & D van Dijk, 2001. "Short-term Volatility versus Long-term Growth: Evidence in US Macroeconomic Time Series," Centre for Growth and Business Cycle Research Discussion Paper Series 08, Economics, The University of Manchester.
    17. Milena Hoyos & Mario Galindo, 2011. "Comparación de los modelos SETAR y STAR para el índice de empleo industrial colombiano," Documentos de Trabajo, Escuela de Economía 8347, Universidad Nacional de Colombia, FCE, CID.
    18. Olivier Damette & Philippe Delacote, 2009. "The environmental resource curse hypothesis: the forest case," Working Papers - Cahiers du LEF 2009-04, Laboratoire d'Economie Forestiere, AgroParisTech-INRA.
    19. Zaman, Asad, 1995. "On the inconsistency of the Breusch-Pagan test," MPRA Paper 9904, University Library of Munich, Germany.
    20. DAVID E. ALLEN & MICHAEL McALEER & ROBERT J. POWELL & ABHAY K. SINGH, 2018. "Non-Parametric Multiple Change Point Analysis Of The Global Financial Crisis," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 13(02), pages 1-23, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:54:y:2003:i:3:d:10.1057_palgrave.jors.2601523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.