IDEAS home Printed from https://ideas.repec.org/p/kyo/wpaper/866.html
   My bibliography  Save this paper

Nonparametric Multiple Change Point Analysis of the Global Financial Crisis

Author

Listed:
  • David E Allen

    (School of Accouting Finance & Economics, Edith Cowan University, Australia)

  • Michael McAleer

    (Econometric Institute Erasmus School of Economics Erasmus University Rotterdam and Tinbergen Institute The Netherlands and Department of Quantitative Economics Complutense University of Madrid Spain and Institute of Economic Research Kyoto University Japan)

  • Robert J Powell

    (School of Accouting Finance & Economics, Edith Cowan University, Australia)

  • Abhay K Singh

    (School of Accouting Finance & Economics, Edith Cowan University, Australia)

Abstract

This paper presents an application of a recently developed approach by Matteson and James (2012) for the analysis of change points in a data set, namely major financial market indices converted to financial return series. The general problem concerns the inference of a change in the distribution of a set of time-ordered variables. The approach involves the nonparametric estimation of both the number of change points and the positions at which they occur. The approach is general and does not involve assumptions about the nature of the distributions involved or the type of change beyond the assumption of the existence of the absolute moment, for some 2 (0; 2). The estimation procedure is based on hierarchical clustering and the application of both divisive and agglomerative algorithms. The method is used to evaluate the impact of the Global Financial Crisis (GFC) on the US, French, German, UK, Japanese and Chinese markets, as represented by the S&P500, CAC, DAX, FTSE All Share, Nikkei 225 and Shanghai A share Indices, respectively, from 2003 to 2013. The approach is used to explore the timing and number of change points in the datasets corresponding to the GFC and subsequent European Debt Crisis.

Suggested Citation

  • David E Allen & Michael McAleer & Robert J Powell & Abhay K Singh, 2013. "Nonparametric Multiple Change Point Analysis of the Global Financial Crisis," KIER Working Papers 866, Kyoto University, Institute of Economic Research.
  • Handle: RePEc:kyo:wpaper:866
    as

    Download full text from publisher

    File URL: http://www.kier.kyoto-u.ac.jp/DP/DP866.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
    2. Allen, David E. & Amram, Ron & McAleer, Michael, 2013. "Volatility spillovers from the Chinese stock market to economic neighbours," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 238-257.
    3. Diebold, Francis X & Rudebusch, Glenn D, 1996. "Measuring Business Cycles: A Modern Perspective," The Review of Economics and Statistics, MIT Press, vol. 78(1), pages 67-77, February.
    4. MArdi Dungey & Renee Fry & Brenda Gonzales-Hermosillo & Vance L. Martin & Chrismin Tang, 2008. "Are Financial Crises Alike?," CAMA Working Papers 2008-15, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    5. Arthur F. Burns & Wesley C. Mitchell, 1946. "Measuring Business Cycles," NBER Books, National Bureau of Economic Research, Inc, number burn46-1.
    6. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    7. Makram Talih & Nicolas Hengartner, 2005. "Structural learning with time‐varying components: tracking the cross‐section of financial time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(3), pages 321-341, June.
    8. Fama, Eugene F, et al, 1969. "The Adjustment of Stock Prices to New Information," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 10(1), pages 1-21, February.
    9. Aas, Kjersti & Czado, Claudia & Frigessi, Arnoldo & Bakken, Henrik, 2009. "Pair-copula constructions of multiple dependence," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 182-198, April.
    10. James H. Stock & Mark W. Watson, 1993. "Business Cycles, Indicators, and Forecasting," NBER Books, National Bureau of Economic Research, Inc, number stoc93-1.
    11. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    12. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 1994. "Bayesian Analysis of Stochastic Volatility Models: Comments: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 413-417, October.
    13. Ball, R & Brown, P, 1968. "Empirical Evaluation Of Accounting Income Numbers," Journal of Accounting Research, Wiley Blackwell, vol. 6(2), pages 159-178.
    14. Stock, James H. & Watson, Mark W. (ed.), 1993. "Business Cycles, Indicators, and Forecasting," National Bureau of Economic Research Books, University of Chicago Press, edition 1, number 9780226774886.
    15. Bradley P. Carlin & Alan E. Gelfand & Adrian F. M. Smith, 1992. "Hierarchical Bayesian Analysis of Changepoint Problems," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(2), pages 389-405, June.
    16. J. Andrew Coutts & Terence Mills & Jennifer Roberts, 1995. "Misspecification of the market model: the implications for event studies," Applied Economics Letters, Taylor & Francis Journals, vol. 2(5), pages 163-165.
    17. A. Craig MacKinlay, 1997. "Event Studies in Economics and Finance," Journal of Economic Literature, American Economic Association, vol. 35(1), pages 13-39, March.
    18. James H. Stock & Mark W. Watson, 1993. "Introduction to "Business Cycles, Indicators and Forecasting"," NBER Chapters, in: Business Cycles, Indicators, and Forecasting, pages 1-10, National Bureau of Economic Research, Inc.
    19. James H. Stock & Mark W. Watson, 1989. "New Indexes of Coincident and Leading Economic Indicators," NBER Chapters, in: NBER Macroeconomics Annual 1989, Volume 4, pages 351-409, National Bureau of Economic Research, Inc.
    20. James H. Stock & Mark W. Watson, 1993. "A Procedure for Predicting Recessions with Leading Indicators: Econometric Issues and Recent Experience," NBER Chapters, in: Business Cycles, Indicators, and Forecasting, pages 95-156, National Bureau of Economic Research, Inc.
    21. David S. Matteson & Nicholas A. James, 2014. "A Nonparametric Approach for Multiple Change Point Analysis of Multivariate Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 334-345, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Massoud Moslehpour & Shin Hung Pan & Aviral Kumar Tiwari & Wing Keung Wong, 2021. "Editorial in Honour of Professor Michael McAleer," Advances in Decision Sciences, Asia University, Taiwan, vol. 25(4), pages 1-14, December.
    2. Allen, David E. & McAleer, Michael & Powell, Robert J. & Singh, Abhay K., 2017. "Volatility Spillovers from Australia's major trading partners across the GFC," International Review of Economics & Finance, Elsevier, vol. 47(C), pages 159-175.
    3. Tareq Almazyad & Norhayati Zakuan & Laith Alrubaiee & Shamaila Butt & Azmirul Ashaari & Raghed IBRAHIM ESMAEEL, 2024. "Bibliometric Insights into Crisis Management: A Review of Key Literature," Advances in Decision Sciences, Asia University, Taiwan, vol. 28(2), pages 1-34, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    2. Christopher L. Gilbert & Duo Qin, 2007. "Representation in Econometrics: A Historical Perspective," Working Papers 583, Queen Mary University of London, School of Economics and Finance.
    3. Grace Lee, 2011. "Aggregate shocks decomposition for eight East Asian countries," Journal of the Asia Pacific Economy, Taylor & Francis Journals, vol. 16(2), pages 215-232.
    4. Michael Funke & Harm Bandholz, 2003. "In search of leading indicators of economic activity in Germany," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(4), pages 277-297.
    5. Christopher L. Gilbert & Duo Qin, 2007. "Representation in Econometrics: A Historical Perspective," Working Papers 583, Queen Mary University of London, School of Economics and Finance.
    6. Ubilava, David, 2019. "On The Relationship Between Financial Instability And Economic Performance: Stressing The Business Of Nonlinear Modeling," Macroeconomic Dynamics, Cambridge University Press, vol. 23(1), pages 80-100, January.
    7. Benoît Bellone, 2006. "Une lecture probabiliste du cycle d’affaires américain," Économie et Prévision, Programme National Persée, vol. 172(1), pages 63-81.
    8. Chauvet, Marcelle & Potter, Simon, 2013. "Forecasting Output," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 141-194, Elsevier.
    9. Carriero, Andrea & Marcellino, Massimiliano, 2007. "A comparison of methods for the construction of composite coincident and leading indexes for the UK," International Journal of Forecasting, Elsevier, vol. 23(2), pages 219-236.
    10. Carriero, Andrea & Marcellino, Massimiliano, 2007. "A comparison of methods for the construction of composite coincident and leading indexes for the UK," International Journal of Forecasting, Elsevier, vol. 23(2), pages 219-236.
    11. Benoit Bellone, 2004. "Une lecture probabiliste du cycle d’affaires américain," Econometrics 0407002, University Library of Munich, Germany, revised 28 Mar 2005.
    12. Arie Marom & Yigal Menashe & Tanya Suchoy, 2003. "The State-of-The-Economy Index and The probability of Recession: The Markov Regime-Switching Model," Bank of Israel Working Papers 2003.05, Bank of Israel.
    13. Duo Qin, 2010. "Econometric Studies of Business Cycles in the History of Econometrics," Working Papers 669, Queen Mary University of London, School of Economics and Finance.
    14. Sergey V. Smirnov & Nikolay V. Kondrashov & Anna V. Petronevich, 2017. "Dating Cyclical Turning Points for Russia: Formal Methods and Informal Choices," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 13(1), pages 53-73, May.
    15. Chris Birchenhall & Denise Osborn & Marianne Sensier, 2001. "Predicting UK Business Cycle Regimes," Scottish Journal of Political Economy, Scottish Economic Society, vol. 48(2), pages 179-195, May.
    16. Terence C. Mills & Ping Wang, 2003. "Multivariate Markov Switching Common Factor Models for the UK," Bulletin of Economic Research, Wiley Blackwell, vol. 55(2), pages 177-193, April.
    17. Vincent, BODART & Konstantin, KHOLODILIN & Fati, SHADMAN-MEHTA, 2005. "Identifying and Forecasting the Turning Points of the Belgian Business Cycle with Regime-Switching and Logit Models," Discussion Papers (ECON - Département des Sciences Economiques) 2005006, Université catholique de Louvain, Département des Sciences Economiques.
    18. Morais, Igor Alexandre C. & Chauvet, Marcelle, 2011. "Leading Indicators for the Capital Goods Industry," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 31(1), March.
    19. Gerson Javier Pérez-Valbuena & Diana Ricciulli-Marín & Jaime Bonet-Morón & Paula Barrios, 2021. "Reglas fiscales subnacionales en Colombia: desde su concepción hasta los resultados frente al COVID-19," Documentos de Trabajo Sobre Economía Regional y Urbana 19126, Banco de la República, Economía Regional.
    20. J. Polzehl & V. Spokoiny & C. Starica, 2004. "When did the 2001 recession really start?," Econometrics 0411017, University Library of Munich, Germany.

    More about this item

    Keywords

    Nonparametric Analysis; Multiple Change Points; Cluster Analysis; Global Financial Crisis.;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kyo:wpaper:866. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Makoto Watanabe (email available below). General contact details of provider: https://edirc.repec.org/data/iekyojp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.