IDEAS home Printed from https://ideas.repec.org/h/eee/ecofch/2-141.html
   My bibliography  Save this book chapter

Forecasting Output

In: Handbook of Economic Forecasting

Author

Listed:
  • Chauvet, Marcelle
  • Potter, Simon

Abstract

This chapter surveys the recent literature on output forecasting, and examines the real-time forecasting ability of several models for U.S. output growth. In particular, it evaluates the accuracy of short-term forecasts of linear and nonlinear structural and reduced-form models, and judgmental forecasts of output growth. Our emphasis is on using solely the information that was available at the time the forecast was being made, in order to reproduce the forecasting problem facing forecasters in real-time. We find that there is a large difference in forecast performance across business cycle phases. In particular, it is much harder to forecast output growth during recessions than during expansions. Simple linear and nonlinear autoregressive models have the best accuracy in forecasting output growth during expansions, although the dynamic stochastic general equilibrium model and the vector autoregressive model with financial variables do relatively well. On the other hand, we find that most models do poorly in forecasting output growth during recessions. The autoregressive model based on the nonlinear dynamic factor model that takes into account asymmetries between expansions and recessions displays the best real time forecast accuracy during recessions. Even though the Blue Chip forecasts are comparable, the dynamic factor Markov switching model has better accuracy, particularly with respect to the timing and depth of output fall during recessions in real time. The results suggest that there are large gains in considering separate forecasting models for normal times and models especially designed for periods of abrupt changes, such as during recessions and financial crises.

Suggested Citation

  • Chauvet, Marcelle & Potter, Simon, 2013. "Forecasting Output," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 141-194, Elsevier.
  • Handle: RePEc:eee:ecofch:2-141
    DOI: 10.1016/B978-0-444-53683-9.00003-7
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/B9780444536839000037
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/B978-0-444-53683-9.00003-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Seonghwan Oh & Michael Waldman, 1990. "The Macroeconomic Effects of False Announcements," The Quarterly Journal of Economics, Oxford University Press, vol. 105(4), pages 1017-1034.
    2. Michal Rubaszek & Pawel Skrzypczynski, 2007. "Can a simple DSGE model outperform Professional Forecasters?," NBP Working Papers 43, Narodowy Bank Polski, Economic Research Department.
    3. Roberto S. Mariano & Yasutomo Murasawa, 2003. "A new coincident index of business cycles based on monthly and quarterly series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 427-443.
    4. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2003. "Do financial variables help forecasting inflation and real activity in the euro area?," Journal of Monetary Economics, Elsevier, vol. 50(6), pages 1243-1255, September.
    5. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008. "Nowcasting: The real-time informational content of macroeconomic data," Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
    6. Dick van Dijk & Timo Terasvirta & Philip Hans Franses, 2002. "Smooth Transition Autoregressive Models — A Survey Of Recent Developments," Econometric Reviews, Taylor & Francis Journals, vol. 21(1), pages 1-47.
    7. Bernard, Henri & Gerlach, Stefan, 1998. "Does the Term Structure Predict Recessions? The International Evidence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 3(3), pages 195-215, July.
    8. Mu-Chun Wang, 2009. "Comparing the DSGE model with the factor model: an out-of-sample forecasting experiment," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(2), pages 167-182.
    9. Assenmacher-Wesche, Katrin & Pesaran, M. Hashem, 2008. "Forecasting the Swiss economy using VECX models: An exercise in forecast combination across models and observation windows," National Institute Economic Review, Cambridge University Press, vol. 203, pages 91-108, January.
    10. Beaudry, Paul & Koop, Gary, 1993. "Do recessions permanently change output?," Journal of Monetary Economics, Elsevier, vol. 31(2), pages 149-163, April.
    11. Jeremy J. Nalewaik, 2011. "Forecasting recessions using stall speeds," Finance and Economics Discussion Series 2011-24, Board of Governors of the Federal Reserve System (U.S.).
    12. Arturo Estrella & Frederic S. Mishkin, 1998. "Predicting U.S. Recessions: Financial Variables As Leading Indicators," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 45-61, February.
    13. Lombardi, Marco J. & Maier, Philipp, 2011. "Forecasting economic growth in the euro area during the Great Moderation and the Great Recession," Working Paper Series 1379, European Central Bank.
    14. Croushore, Dean & Stark, Tom, 2001. "A real-time data set for macroeconomists," Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
    15. Michael T. Owyang & Jeremy Piger & Howard J. Wall, 2015. "Forecasting National Recessions Using State‐Level Data," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 47(5), pages 847-866, August.
    16. Marcelle Chauvet & Simon Potter, 2005. "Forecasting recessions using the yield curve," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(2), pages 77-103.
    17. Warne, Anders & Coenen, Günter & Christoffel, Kai, 2008. "The new area-wide model of the euro area: a micro-founded open-economy model for forecasting and policy analysis," Working Paper Series 944, European Central Bank.
    18. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2016. "Common Drifting Volatility in Large Bayesian VARs," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 375-390, July.
    19. Marcellino, Massimiliano & Schumacher, Christian, 2007. "Factor-MIDAS for now- and forecasting with ragged-edge data: a model comparison for German GDP," Discussion Paper Series 1: Economic Studies 2007,34, Deutsche Bundesbank.
    20. Martin D. D. Evans, 2005. "Where Are We Now? Real-Time Estimates of the Macroeconomy," International Journal of Central Banking, International Journal of Central Banking, vol. 1(2), September.
    21. Anderson, Heather M. & Vahid, Farshid, 2001. "Predicting The Probability Of A Recession With Nonlinear Autoregressive Leading-Indicator Models," Macroeconomic Dynamics, Cambridge University Press, vol. 5(4), pages 482-505, September.
    22. Frank Schorfheide & Dongho Song, 2015. "Real-Time Forecasting With a Mixed-Frequency VAR," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 366-380, July.
    23. Pesaran, M Hashem & Timmermann, Allan, 1992. "A Simple Nonparametric Test of Predictive Performance," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 561-565, October.
    24. Marcin Kolasa & MichaŁ Rubaszek & PaweŁ SkrzypczyŃski, 2012. "Putting the New Keynesian DSGE Model to the Real-Time Forecasting Test," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(7), pages 1301-1324, October.
    25. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    26. Tashman, Leonard J., 2000. "Out-of-sample tests of forecasting accuracy: an analysis and review," International Journal of Forecasting, Elsevier, vol. 16(4), pages 437-450.
    27. Kydland, Finn E & Prescott, Edward C, 1982. "Time to Build and Aggregate Fluctuations," Econometrica, Econometric Society, vol. 50(6), pages 1345-1370, November.
    28. Wolters, Maik H., 2011. "Forecasting under Model Uncertainty," VfS Annual Conference 2011 (Frankfurt, Main): The Order of the World Economy - Lessons from the Crisis 48723, Verein für Socialpolitik / German Economic Association.
    29. Guangling 'Dave' Liu & Rangan Gupta & Eric Schaling, 2009. "A New-Keynesian DSGE model for forecasting the South African economy," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(5), pages 387-404.
    30. Malin Adolfson & Michael K. Andersson & Jesper Lindé & Mattias Villani & Anders Vredin, 2007. "Modern Forecasting Models in Action: Improving Macroeconomic Analyses at Central Banks," International Journal of Central Banking, International Journal of Central Banking, vol. 3(4), pages 111-144, December.
    31. Banbura, Marta & Rünstler, Gerhard, 2011. "A look into the factor model black box: Publication lags and the role of hard and soft data in forecasting GDP," International Journal of Forecasting, Elsevier, vol. 27(2), pages 333-346, April.
    32. Christopher A. Sims & Tao Zha, 2006. "Were There Regime Switches in U.S. Monetary Policy?," American Economic Review, American Economic Association, vol. 96(1), pages 54-81, March.
    33. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Bayesian VARs: Specification Choices and Forecast Accuracy," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(1), pages 46-73, January.
    34. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
    35. Diebold, Francis X & Rudebusch, Glenn D, 1996. "Measuring Business Cycles: A Modern Perspective," The Review of Economics and Statistics, MIT Press, vol. 78(1), pages 67-77, February.
    36. Fair, Ray C, 1970. "The Estimation of Simultaneous Equation Models with Lagged Endogenous Variables and First Order Serially Correlated Errors," Econometrica, Econometric Society, vol. 38(3), pages 507-516, May.
    37. Chauvet, Marcelle & Guo, Jang-Ting, 2003. "Sunspots, Animal Spirits, And Economic Fluctuations," Macroeconomic Dynamics, Cambridge University Press, vol. 7(1), pages 140-169, February.
    38. Massimiliano Marcellino & Christian Schumacher, 2008. "Factor-MIDAS for Now- and Forecasting with Ragged-Edge Data: A Model Comparison for German GDP1," Working Papers 333, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    39. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    40. Stark, Tom & Croushore, Dean, 2002. "Forecasting with a real-time data set for macroeconomists," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 507-531, December.
    41. Margaret M. McConnell & Gabriel Perez-Quiros, 2000. "Output fluctuations in the United States: what has changed since the early 1980s?," Proceedings, Federal Reserve Bank of San Francisco, issue Mar.
    42. Volker Wieland & Maik Wolters, 2011. "The diversity of forecasts from macroeconomic models of the US economy," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 47(2), pages 247-292, June.
    43. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 4, pages 135-196, Elsevier.
    44. Arthur F. Burns & Wesley C. Mitchell, 1946. "Measuring Business Cycles," NBER Books, National Bureau of Economic Research, Inc, number burn46-1.
    45. Pierre Guérin & Massimiliano Marcellino, 2013. "Markov-Switching MIDAS Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 45-56, January.
    46. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2003. "Macroeconomic forecasting in the Euro area: Country specific versus area-wide information," European Economic Review, Elsevier, vol. 47(1), pages 1-18, February.
    47. Tovar, Camilo Ernesto, 2009. "DSGE Models and Central Banks," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-31.
    48. Aruoba, S. BoraÄŸan & Diebold, Francis X. & Scotti, Chiara, 2009. "Real-Time Measurement of Business Conditions," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 417-427.
    49. Lawrence J. Christiano & Martin Eichenbaum & Charles L. Evans, 2005. "Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy," Journal of Political Economy, University of Chicago Press, vol. 113(1), pages 1-45, February.
    50. Elena Angelini & Gonzalo Camba‐Mendez & Domenico Giannone & Lucrezia Reichlin & Gerhard Rünstler, 2011. "Short‐term forecasts of euro area GDP growth," Econometrics Journal, Royal Economic Society, vol. 14(1), pages 25-44, February.
    51. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
    52. Capistrán, Carlos & Timmermann, Allan, 2009. "Forecast Combination With Entry and Exit of Experts," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 428-440.
    53. Todd E. Clark & Michael W. McCracken, 2010. "Averaging forecasts from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 5-29, January.
    54. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    55. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2005. "Nowcasting GDP and Inflation: The Real Time Informational Content of Macroeconomic Data Releases," CEPR Discussion Papers 5178, C.E.P.R. Discussion Papers.
    56. Chauvet, Marcelle, 1998. "An Econometric Characterization of Business Cycle Dynamics with Factor Structure and Regime Switching," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 969-996, November.
    57. Cooley, Thomas F. & Leroy, Stephen F., 1985. "Atheoretical macroeconometrics: A critique," Journal of Monetary Economics, Elsevier, vol. 16(3), pages 283-308, November.
    58. Marcelle Chauvet & Simon Potter, 2001. "Recent Changes in the US Business Cycle," Manchester School, University of Manchester, vol. 69(5), pages 481-508, October.
    59. Camacho, Maximo & Perez-Quiros, Gabriel & Poncela, Pilar, 2018. "Markov-switching dynamic factor models in real time," International Journal of Forecasting, Elsevier, vol. 34(4), pages 598-611.
    60. Katrin Assenmacher-Wesche & M. Hashem Pesaran, 2008. "Forecasting the Swiss Economy Using Vecx* Models: an Exercise in Forecast Combination Across Models and Observation Windows," National Institute Economic Review, National Institute of Economic and Social Research, vol. 203(1), pages 91-108, January.
    61. Negro, Marco Del & Schorfheide, Frank, 2013. "DSGE Model-Based Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 57-140, Elsevier.
    62. Bharat Trehan, 1989. "Forecasting growth in current quarter real GNP," Economic Review, Federal Reserve Bank of San Francisco, issue Win, pages 39-52.
    63. Clements, Michael P & Galvão, Ana Beatriz, 2008. "Macroeconomic Forecasting With Mixed-Frequency Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 546-554.
    64. S. Boragan Aruoba & Francis X. Diebold, 2010. "Real-Time Macroeconomic Monitoring: Real Activity, Inflation, and Interactions," American Economic Review, American Economic Association, vol. 100(2), pages 20-24, May.
    65. Heikki Kauppi & Pentti Saikkonen, 2008. "Predicting U.S. Recessions with Dynamic Binary Response Models," The Review of Economics and Statistics, MIT Press, vol. 90(4), pages 777-791, November.
    66. Henri Nyberg, 2010. "Dynamic probit models and financial variables in recession forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 215-230.
    67. Cecilia Frale & Massimiliano Marcellino & Gian Luigi Mazzi & Tommaso Proietti, 2011. "EUROMIND: a monthly indicator of the euro area economic conditions," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 174(2), pages 439-470, April.
    68. Spencer D. Krane, 2011. "Professional Forecasters' View of Permanent and Transitory Shocks to GDP," American Economic Journal: Macroeconomics, American Economic Association, vol. 3(1), pages 184-211, January.
    69. Tommaso Proietti & Filippo Moauro, 2006. "Dynamic factor analysis with non‐linear temporal aggregation constraints," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 55(2), pages 281-300, April.
    70. Frank Smets & Rafael Wouters, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
    71. Kathryn Lundquist & H.O. Stekler, 2011. "The Forecasting Performance of Business Economists During the Great Recession," Working Papers 2011-004, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    72. Chauvet, Marcelle & Piger, Jeremy, 2008. "A Comparison of the Real-Time Performance of Business Cycle Dating Methods," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 42-49, January.
    73. Warne, Anders & Coenen, Günter & Christoffel, Kai, 2010. "Forecasting with DSGE models," Working Paper Series 1185, European Central Bank.
    74. Kim, Chang-Jin & Piger, Jeremy & Startz, Richard, 2008. "Estimation of Markov regime-switching regression models with endogenous switching," Journal of Econometrics, Elsevier, vol. 143(2), pages 263-273, April.
    75. Koop, Gary & Leon-Gonzalez, Roberto & Strachan, Rodney W., 2009. "On the evolution of the monetary policy transmission mechanism," Journal of Economic Dynamics and Control, Elsevier, vol. 33(4), pages 997-1017, April.
    76. Julio J. Rotemberg & Michael Woodford, 1997. "An Optimization-Based Econometric Framework for the Evaluation of Monetary Policy," NBER Chapters, in: NBER Macroeconomics Annual 1997, Volume 12, pages 297-361, National Bureau of Economic Research, Inc.
    77. Marcelle Chauvet & Jeremy Piger, 2013. "Employment And The Business Cycle," Manchester School, University of Manchester, vol. 81, pages 16-42, October.
    78. Estrella, Arturo & Hardouvelis, Gikas A, 1991. "The Term Structure as a Predictor of Real Economic Activity," Journal of Finance, American Finance Association, vol. 46(2), pages 555-576, June.
    79. D van Dijk & D R Osborn & M Sensier, 2002. "Changes in variability of the business cycle in the G7 countries," Economics Discussion Paper Series 0204, Economics, The University of Manchester.
    80. Chang-Jin Kim & Charles R. Nelson, 1998. "Business Cycle Turning Points, A New Coincident Index, And Tests Of Duration Dependence Based On A Dynamic Factor Model With Regime Switching," The Review of Economics and Statistics, MIT Press, vol. 80(2), pages 188-201, May.
    81. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," University of California at Los Angeles, Anderson Graduate School of Management qt9mf223rs, Anderson Graduate School of Management, UCLA.
    82. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    83. David F. Hendry & Michael P. Clements, 2004. "Pooling of forecasts," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 1-31, June.
    84. Vladimir Kuzin & Massimiliano Marcellino & Christian Schumacher, 2013. "Pooling Versus Model Selection For Nowcasting Gdp With Many Predictors: Empirical Evidence For Six Industrialized Countries," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(3), pages 392-411, April.
    85. Chauvet, Marcelle & Tierney, Heather L. R., 2007. "Real Time Changes in Monetary Policy," MPRA Paper 16199, University Library of Munich, Germany, revised Apr 2009.
    86. Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," Review of Economic Studies, Oxford University Press, vol. 72(3), pages 821-852.
    87. Chang-Jin Kim & Charles R. Nelson, 1999. "Has The U.S. Economy Become More Stable? A Bayesian Approach Based On A Markov-Switching Model Of The Business Cycle," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 608-616, November.
    88. Lucas, Robert Jr, 1976. "Econometric policy evaluation: A critique," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 1(1), pages 19-46, January.
    89. Chib, Siddhartha, 1998. "Estimation and comparison of multiple change-point models," Journal of Econometrics, Elsevier, vol. 86(2), pages 221-241, June.
    90. Jeremy J. Nalewaik, 2012. "Estimating Probabilities of Recession in Real Time Using GDP and GDI," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(1), pages 235-253, February.
    91. Terence C. Mills & Ping Wang, 2003. "Have output growth rates stabilised? evidence from the g‐7 economies," Scottish Journal of Political Economy, Scottish Economic Society, vol. 50(3), pages 232-246, August.
    92. Marcelle Chauvet & Zeynep Senyuz, 2012. "A Dynamic Factor Model of the Yield Curve as a Predictor of the Economy," Finance and Economics Discussion Series 2012-32, Board of Governors of the Federal Reserve System (U.S.).
    93. Jon Faust, 2012. "DSGE Models: I Smell a Rat (and It Smells Good)," International Journal of Central Banking, International Journal of Central Banking, vol. 8(1), pages 53-64, March.
    94. Rochelle M. Edge & Refet S. Gurkaynak, 2010. "How Useful Are Estimated DSGE Model Forecasts for Central Bankers?," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 41(2 (Fall)), pages 209-259.
    95. James H. Stock & Mark W. Watson, 1989. "New Indexes of Coincident and Leading Economic Indicators," NBER Chapters, in: NBER Macroeconomics Annual 1989, Volume 4, pages 351-409, National Bureau of Economic Research, Inc.
    96. James H. Stock & Mark W. Watson, 1993. "A Procedure for Predicting Recessions with Leading Indicators: Econometric Issues and Recent Experience," NBER Chapters, in: Business Cycles, Indicators, and Forecasting, pages 95-156, National Bureau of Economic Research, Inc.
    97. Rubaszek, Michal & Skrzypczynski, Pawel, 2008. "On the forecasting performance of a small-scale DSGE model," International Journal of Forecasting, Elsevier, vol. 24(3), pages 498-512.
    98. Nelson, Charles R, 1972. "The Prediction Performance of the FRB-MIT-PENN Model of the U.S. Economy," American Economic Review, American Economic Association, vol. 62(5), pages 902-917, December.
    99. Chauvet, Marcelle & Potter, Simon, 2002. "Predicting a recession: evidence from the yield curve in the presence of structural breaks," Economics Letters, Elsevier, vol. 77(2), pages 245-253, October.
    100. Frank Smets & Raf Wouters, 2003. "An Estimated Dynamic Stochastic General Equilibrium Model of the Euro Area," Journal of the European Economic Association, MIT Press, vol. 1(5), pages 1123-1175, September.
    101. Chauvet, Marcelle, 2001. "A Monthly Indicator of Brazilian GDP," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 21(1), May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    2. Bjørnland, Hilde C. & Ravazzolo, Francesco & Thorsrud, Leif Anders, 2017. "Forecasting GDP with global components: This time is different," International Journal of Forecasting, Elsevier, vol. 33(1), pages 153-173.
    3. Frank Schorfheide & Dongho Song, 2015. "Real-Time Forecasting With a Mixed-Frequency VAR," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 366-380, July.
    4. Boriss Siliverstovs & Daniel Wochner, 2019. "Recessions as Breadwinner for Forecasters State-Dependent Evaluation of Predictive Ability: Evidence from Big Macroeconomic US Data," KOF Working papers 19-463, KOF Swiss Economic Institute, ETH Zurich.
    5. Raffaella Giacomini & Barbara Rossi, 2015. "Forecasting in Nonstationary Environments: What Works and What Doesn't in Reduced-Form and Structural Models," Annual Review of Economics, Annual Reviews, vol. 7(1), pages 207-229, August.
    6. William A. Barnett & Marcelle Chauvet & Danilo Leiva-Leon, 2014. "Real-Time Nowcasting of Nominal GDP Under Structural Breaks," Staff Working Papers 14-39, Bank of Canada.
    7. Catherine Doz & Laurent Ferrara & Pierre-Alain Pionnier, 2020. "Business cycle dynamics after the Great Recession: An extended Markov-Switching Dynamic Factor Model," OECD Statistics Working Papers 2020/01, OECD Publishing.
    8. Ouysse, Rachida, 2016. "Bayesian model averaging and principal component regression forecasts in a data rich environment," International Journal of Forecasting, Elsevier, vol. 32(3), pages 763-787.
    9. Barnett, William A. & Chauvet, Marcelle & Leiva-Leon, Danilo, 2016. "Real-time nowcasting of nominal GDP with structural breaks," Journal of Econometrics, Elsevier, vol. 191(2), pages 312-324.
    10. Raul Ibarra & Luis M. Gomez-Zamudio, 2017. "Are Daily Financial Data Useful for Forecasting GDP? Evidence from Mexico," Economía Journal, The Latin American and Caribbean Economic Association - LACEA, vol. 0(Spring 20), pages 173-203, April.
    11. Elliott, Graham & Gargano, Antonio & Timmermann, Allan, 2015. "Complete subset regressions with large-dimensional sets of predictors," Journal of Economic Dynamics and Control, Elsevier, vol. 54(C), pages 86-110.
    12. Rachidi Kotchoni & Dalibor Stevanovic, 2016. "Forecasting U.S. Recessions and Economic Activity," EconomiX Working Papers 2016-40, University of Paris Nanterre, EconomiX.
    13. Kuang-Liang Chang & Nan-Kuang Chen & Charles Ka Yui Leung, 2016. "Losing Track of the Asset Markets: the Case of Housing and Stock," International Real Estate Review, Global Social Science Institute, vol. 19(4), pages 435-492.
    14. Pascal J. Maenhout & Andrea Vedolin & Hao Xing, 2020. "Generalized Robustness and Dynamic Pessimism," NBER Working Papers 26970, National Bureau of Economic Research, Inc.
    15. Heinrich, Markus & Carstensen, Kai & Reif, Magnus & Wolters, Maik, 2017. "Predicting Ordinary and Severe Recessions with a Three-State Markov-Switching Dynamic Factor Model. An Application to the German Business Cycle," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168206, Verein für Socialpolitik / German Economic Association.
    16. Cross, Jamie & Poon, Aubrey, 2016. "Forecasting structural change and fat-tailed events in Australian macroeconomic variables," Economic Modelling, Elsevier, vol. 58(C), pages 34-51.
    17. Lunsford, Kurt G., 2015. "Forecasting residential investment in the United States," International Journal of Forecasting, Elsevier, vol. 31(2), pages 276-285.
    18. Baghestani, Hamid & AbuAl-Foul, Bassam M., 2017. "Comparing Federal Reserve, Blue Chip, and time series forecasts of US output growth," Journal of Economics and Business, Elsevier, vol. 89(C), pages 47-56.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barnett, William A. & Chauvet, Marcelle & Leiva-Leon, Danilo, 2016. "Real-time nowcasting of nominal GDP with structural breaks," Journal of Econometrics, Elsevier, vol. 191(2), pages 312-324.
    2. William Barnett & Marcelle Chauvetz & Danilo Leiva-Leonx, 2014. "Real-Time Nowcasting Nominal GDP Under Structural Break," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201313, University of Kansas, Department of Economics, revised Feb 2014.
    3. William A. Barnett & Marcelle Chauvet & Danilo Leiva-Leon, 2014. "Real-Time Nowcasting of Nominal GDP Under Structural Breaks," Staff Working Papers 14-39, Bank of Canada.
    4. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    5. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.
    6. Bańbura, Marta & Giannone, Domenico & Modugno, Michele & Reichlin, Lucrezia, 2013. "Now-Casting and the Real-Time Data Flow," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 195-237, Elsevier.
    7. Bekiros Stelios & Paccagnini Alessia, 2015. "Estimating point and density forecasts for the US economy with a factor-augmented vector autoregressive DSGE model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(2), pages 107-136, April.
    8. Raffaella Giacomini & Barbara Rossi, 2013. "Forecasting in macroeconomics," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 17, pages 381-408, Edward Elgar Publishing.
    9. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers halshs-02262202, HAL.
    10. Knut Are Aastveit & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud, 2014. "Nowcasting GDP in Real Time: A Density Combination Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(1), pages 48-68, January.
    11. Vladimir Kuzin & Massimiliano Marcellino & Christian Schumacher, 2009. "Pooling versus Model Selection for Nowcasting with Many Predictors: An Application to German GDP," Economics Working Papers ECO2009/13, European University Institute.
    12. Stelios D. Bekiros & Alessia Paccagnini, 2016. "Policy‐Oriented Macroeconomic Forecasting with Hybrid DGSE and Time‐Varying Parameter VAR Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(7), pages 613-632, November.
    13. Maik H. Wolters, 2015. "Evaluating Point and Density Forecasts of DSGE Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(1), pages 74-96, January.
    14. Stelios Bekiros & Alessia Paccagnini, 2013. "On the predictability of time-varying VAR and DSGE models," Empirical Economics, Springer, vol. 45(1), pages 635-664, August.
    15. Bekiros, Stelios D. & Paccagnini, Alessia, 2014. "Bayesian forecasting with small and medium scale factor-augmented vector autoregressive DSGE models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 298-323.
    16. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    17. Rusnák, Marek, 2016. "Nowcasting Czech GDP in real time," Economic Modelling, Elsevier, vol. 54(C), pages 26-39.
    18. Carriero, Andrea & Marcellino, Massimiliano, 2007. "A comparison of methods for the construction of composite coincident and leading indexes for the UK," International Journal of Forecasting, Elsevier, vol. 23(2), pages 219-236.
    19. Chernis, Tony & Cheung, Calista & Velasco, Gabriella, 2020. "A three-frequency dynamic factor model for nowcasting Canadian provincial GDP growth," International Journal of Forecasting, Elsevier, vol. 36(3), pages 851-872.
    20. Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Economics Working Papers ECO2013/02, European University Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecofch:2-141. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/wps/find/bookseriesdescription.cws_home/BS_HE/description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/bookseriesdescription.cws_home/BS_HE/description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.