IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpem/0401003.html
   My bibliography  Save this paper

Dynamic Factor Analysis with Nonlinear Temporal Aggregation Constraints

Author

Listed:
  • Tommaso Proietti

    (Dipartimento di Scienze Statistiche, Università di Udine)

  • Filippo Moauro

    (ISTAT, Rome)

Abstract

The paper estimates an index of coincident economic indicators for the U.S. economy using time series with different frequencies of observation (monthly and quarterly, possibly with missing values). The model considered is the dynamic factor model proposed by Stock and Watson, specified in the logarithms of the original variables and at the monthly frequency, which poses a problem of temporal aggregation with a nonlinear observational constraint when quarterly time series are included. Our main methodological contribution is to provide an exact solution to this problem, that hinges on conditional mode estimation by extended Kalman filtering and smoothing. On the empirical side the contribution of the paper is to provide monthly estimates of quarterly indicators, among which Gross Domestic Product, that are consistent with the quarterly totals.

Suggested Citation

  • Tommaso Proietti & Filippo Moauro, 2004. "Dynamic Factor Analysis with Nonlinear Temporal Aggregation Constraints," Econometrics 0401003, EconWPA.
  • Handle: RePEc:wpa:wuwpem:0401003
    Note: Type of Document - ; prepared on WinXP; pages: 20; figures: 2
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/em/papers/0401/0401003.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Roberto S. Mariano & Yasutomo Murasawa, 2003. "A new coincident index of business cycles based on monthly and quarterly series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 427-443.
    2. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    3. Siem Jan Koopman & Neil Shephard & Jurgen A. Doornik, 1999. "Statistical algorithms for models in state space using SsfPack 2.2," Econometrics Journal, Royal Economic Society, vol. 2(1), pages 107-160.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpem:0401003. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA). General contact details of provider: http://econwpa.repec.org .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.