IDEAS home Printed from https://ideas.repec.org/p/ptu/wpaper/w200316.html
   My bibliography  Save this paper

Tracking Growth and the Business Cycle: a Stochastic Common Cycle Model for the Euro Area

Author

Listed:
  • João Valle e Azevedo
  • Siem Jan Koopman
  • António Rua

Abstract

This paper proposes a new model-based method to obtain a coincident indicator for the business cycle. A dynamic factor model with trend components and a common cycle component is considered which can be estimated using standard maximum likelihood methods. The multivariate unobserved components model includes a stationary higher order cycle. Also higher order trends can be part of the analysis. These generalisations lead to a business cycle that is similar to a band-pass one. Furthermore, cycle shifts for individual time series are incorporated within the model and estimated simultaneously with the remaining parameters. This feature permits the use of leading, coincident and lagging variables to obtain the business cycle coincident indicator without prior analysis of their lead-lag relationship. Besides the business cycle indicator, the model-based approach also allows to get a growth rate indicator. In the empirical analysis for the Euro area, both indicators are obtained based on nine key economic time series including gross domestic product, industrial production, unemployment, confidence indicators and interest rate spread. This analysis contrasts sharply with earlier multivariate approaches. In particular, our more parsimonious approach leads to a growth rate indicator for the Euro area that is similar to the one of EuroCOIN. The latter is based on a more involved approach by any standard and uses hundreds of time series from individual countries belonging to the Euro area.

Suggested Citation

  • João Valle e Azevedo & Siem Jan Koopman & António Rua, 2003. "Tracking Growth and the Business Cycle: a Stochastic Common Cycle Model for the Euro Area," Working Papers w200316, Banco de Portugal, Economics and Research Department.
  • Handle: RePEc:ptu:wpaper:w200316
    as

    Download full text from publisher

    File URL: https://www.bportugal.pt/sites/default/files/anexos/papers/wp200316.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Roberto S. Mariano & Yasutomo Murasawa, 2003. "A new coincident index of business cycles based on monthly and quarterly series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 427-443.
    2. Marianne Baxter & Robert G. King, 1999. "Measuring Business Cycles: Approximate Band-Pass Filters For Economic Time Series," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 575-593, November.
    3. Athanasios Orphanides & Simon van Norden, 2002. "The Unreliability of Output-Gap Estimates in Real Time," The Review of Economics and Statistics, MIT Press, vol. 84(4), pages 569-583, November.
    4. Altissimo, Filippo & Bassanetti, Antonio & Cristadoro, Riccardo & Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia & Veronese, Giovanni, 2001. "EuroCOIN: A Real Time Coincident Indicator of the Euro Area Business Cycle," CEPR Discussion Papers 3108, C.E.P.R. Discussion Papers.
    5. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    6. Andrew C. Harvey & Thomas M. Trimbur, 2003. "General Model-Based Filters for Extracting Cycles and Trends in Economic Time Series," The Review of Economics and Statistics, MIT Press, vol. 85(2), pages 244-255, May.
    7. Harvey, A C & Jaeger, A, 1993. "Detrending, Stylized Facts and the Business Cycle," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(3), pages 231-247, July-Sept.
    8. Siem Jan Koopman & Neil Shephard & Jurgen A. Doornik, 1999. "Statistical algorithms for models in state space using SsfPack 2.2," Econometrics Journal, Royal Economic Society, vol. 2(1), pages 107-160.
    9. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    10. Filippo Altissimo & Antonio Bassanetti & Riccardo Cristadoro & Mario Forni & Marco Lippi & Lucrezia Reichlin & Giovanni Veronese, 2001. "A real time coincident indicator of the euro area business cycle," Temi di discussione (Economic working papers) 436, Bank of Italy, Economic Research and International Relations Area.
    11. Gomez, Victor, 2001. "The Use of Butterworth Filters for Trend and Cycle Estimation in Economic Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(3), pages 365-373, July.
    12. James H. Stock & Mark W. Watson, 1989. "New Indexes of Coincident and Leading Economic Indicators," NBER Chapters,in: NBER Macroeconomics Annual 1989, Volume 4, pages 351-409 National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cayen, Jean-Philippe & van Norden, Simon, 2005. "The reliability of Canadian output-gap estimates," The North American Journal of Economics and Finance, Elsevier, pages 373-393.
    2. Edoardo Otranto, 2005. "Extraction of Common Signal from Series with Different Frequency," Econometrics 0502011, EconWPA.
    3. Julien Garnier, 2004. "UK in or UK Out? A Common Cycle Analysis Between the UK and the Euro Zone," Working Papers 2004-17, CEPII research center.

    More about this item

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ptu:wpaper:w200316. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (DEE-NTDD). General contact details of provider: http://edirc.repec.org/data/bdpgvpt.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.