IDEAS home Printed from https://ideas.repec.org/p/ecm/feam04/710.html

Constructing a Coincident Index of Business Cycles Without Assuming a One-Factor Model

Author

Listed:
  • Yasutomo Murasawa
  • Roberto S. Mariano

Abstract

The Stock--Watson coincident index and its subsequent extensions assume a static linear one-factor model for the component indicators. Such assumption is restrictive in practice, however, with as few as four indicators. In fact, such assumption is unnecessary if one poses the index construction problem as optimal prediction of latent monthly real GDP. This paper estimates a VAR model for latent monthly real GDP and other indicators using the observable mixed-frequency series. The EM algorithm is useful for overcoming the computational difficulty, especially in model selection. The smoothed estimate of latent monthly real GDP is the proposed index

Suggested Citation

  • Yasutomo Murasawa & Roberto S. Mariano, 2004. "Constructing a Coincident Index of Business Cycles Without Assuming a One-Factor Model," Econometric Society 2004 Far Eastern Meetings 710, Econometric Society.
  • Handle: RePEc:ecm:feam04:710
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cecilia Frale & David Veredas, 2008. "A Monthly Volatility Index for the US Economy," Working Papers ECARES 2008-008, ULB -- Universite Libre de Bruxelles.
    2. Paul Viefers, 2011. "Bayesian Inference for the Mixed-Frequency VAR Model," Discussion Papers of DIW Berlin 1172, DIW Berlin, German Institute for Economic Research.
    3. Urasawa, Satoshi, 2014. "Real-time GDP forecasting for Japan: A dynamic factor model approach," Journal of the Japanese and International Economies, Elsevier, vol. 34(C), pages 116-134.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C43 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Index Numbers and Aggregation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:feam04:710. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.