IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Creating High-Frequency National Accounts with State-Space Modelling: A Monte Carlo Experiment

  • Liu, H
  • Hall, Stephen G

This paper assesses a new technique for producing high-frequency data from lower frequency measurements subject to the full set of identities within the data all holding. The technique is assessed through a set of Monte Carlo experiments. The example used here is gross domestic product (GDP) which is observed at quarterly intervals in the United States and it is a flow economic variable rather than a stock. The problem of constructing an unobserved monthly GDP variable can be handled using state space modelling. The solution of the problem lies in finding a suitable state space representation. A Monte Carlo experiment is conducted to illustrate this concept and to identify which variant of the model gives the best monthly estimates. The results demonstrate that the more simple models do almost as well as more complex ones and hence there may be little gain in return for the extra work of using a complex model. Copyright © 2001 by John Wiley & Sons, Ltd.

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below under "Related research" whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.

Article provided by John Wiley & Sons, Ltd. in its journal Journal of Forecasting.

Volume (Year): 20 (2001)
Issue (Month): 6 (September)
Pages: 441-49

in new window

Handle: RePEc:jof:jforec:v:20:y:2001:i:6:p:441-49
Contact details of provider: Web page:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:jof:jforec:v:20:y:2001:i:6:p:441-49. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing)

or (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.