IDEAS home Printed from https://ideas.repec.org/a/jof/jforec/v27y2008i2p95-108.html
   My bibliography  Save this article

Linking series generated at different frequencies This work is part of a PhD dissertation presented at the University of California, San Diego (1999)

Author

Listed:
  • Namwon Hyung

    (Department of Economics, University of Seoul, Seoul, Korea)

  • Clive W.J. Granger

    (Department of Economics, University of California, San Diego, California, USA)

Abstract

This is a report on our studies of the systematical use of mixed-frequency datasets. We suggest that the use of high-frequency data in forecasting economic aggregates can increase the accuracy of forecasts. The best way of using this information is to build a single model that relates the data of all frequencies, for example, an ARMA model with missing observations. As an application of linking series generated at different frequencies, we show that the use of a monthly industrial production index improves the predictability of the quarterly GNP. Copyright © 2008 John Wiley & Sons, Ltd.

Suggested Citation

  • Namwon Hyung & Clive W.J. Granger, 2008. "Linking series generated at different frequencies This work is part of a PhD dissertation presented at the University of California, San Diego (1999)," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(2), pages 95-108.
  • Handle: RePEc:jof:jforec:v:27:y:2008:i:2:p:95-108 DOI: 10.1002/for.1042
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/for.1042
    File Function: Link to full text; subscription required
    Download Restriction: no

    References listed on IDEAS

    as
    1. Luis C. Nunes, 2005. "Nowcasting quarterly GDP growth in a monthly coincident indicator model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(8), pages 575-592.
    2. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    3. Liu, H & Hall, Stephen G, 2001. "Creating High-Frequency National Accounts with State-Space Modelling: A Monte Carlo Experiment," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(6), pages 441-449, September.
    4. Weiss, Andrew A., 1984. "Systematic sampling and temporal aggregation in time series models," Journal of Econometrics, Elsevier, vol. 26(3), pages 271-281, December.
    5. Harvey, David I & Leybourne, Stephen J & Newbold, Paul, 1998. "Tests for Forecast Encompassing," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 254-259, April.
    6. James H. Stock & Mark W. Watson, 1989. "New Indexes of Coincident and Leading Economic Indicators," NBER Chapters,in: NBER Macroeconomics Annual 1989, Volume 4, pages 351-409 National Bureau of Economic Research, Inc.
    7. Abeysinghe, Tilak, 1998. "Forecasting Singapore's quarterly GDP with monthly external trade," International Journal of Forecasting, Elsevier, vol. 14(4), pages 505-513, December.
    8. Granger, Clive W.J., 1998. "Extracting Information from Mega-Panels and High-Frequency Data," University of California at San Diego, Economics Working Paper Series qt17t2d9n6, Department of Economics, UC San Diego.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pedregal, Diego J. & Pérez, Javier J., 2010. "Should quarterly government finance statistics be used for fiscal surveillance in Europe?," International Journal of Forecasting, Elsevier, vol. 26(4), pages 794-807, October.
    2. Klaus Wohlrabe, 2009. "Makroökonomische Prognosen mit gemischten Frequenzen," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 62(21), pages 22-33, November.
    3. Qian, Hang, 2013. "Vector Autoregression with Mixed Frequency Data," MPRA Paper 47856, University Library of Munich, Germany.
    4. Qian, Hang, 2012. "A Flexible State Space Model and its Applications," MPRA Paper 38455, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jof:jforec:v:27:y:2008:i:2:p:95-108. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.