IDEAS home Printed from https://ideas.repec.org/p/uct/uconnp/2014-10.html
   My bibliography  Save this paper

Forecasting US Real Private Residential Fixed Investment Using a Large Number of Predictors

Author

Listed:
  • Goodness C. Aye

    (University of Pretoria)

  • Rangan Gupta

    (University of Pretoria)

  • Stephen M. Miller

    (University of Nevada, Las Vegas and University of Connecticut)

  • Mehmet Balcilar

    (Eastern Mediterranean University)

Abstract

This paper employs classical bivariate, factor augmented (FA), slab-and-spike variable selection (SSVS)-based, and Bayesian semi-parametric shrinkage (BSS)-based predictive regression models to forecast US real private residential fixed investment over an out-of-sample period from 1983:Q1 to 2011:Q2, based on an in-sample estimates for 1963:Q1 to 1982:Q4. Both large-scale (188 macroeconomic series) and small-scale (20 macroeconomic series) FA, SSVS, and BSS predictive regressions, as well as 20 bivariate regression models, capture the influence of fundamentals in forecasting residential investment. We evaluate the ex-post out-of-sample forecast performance of the 26 models using the relative average Mean Square Error for one-, two-, four-, and eight-quarters-ahead forecasts and test their significance based on the McCracken (2004, 2007) MSE-F statistic. We find that, on average, the SSVS-Large model provides the best forecasts amongst all the models. We also find that one of the individual regression models, using house for sale (H4SALE) as a predictor, performs best at the four- and eight-quarters-ahead horizons. Finally, we use these two models to predict the relevant turning points of the residential investment, via an ex-ante forecast exercise from 2011:Q3 to 2012:Q4. The SSVS-Large model forecasts the turning points more accurately, although the H4SALE model does better toward the end of the sample. Our results suggest that economy-wide factors, in addition to specific housing market variables, prove important when forecasting in the real estate market.

Suggested Citation

  • Goodness C. Aye & Rangan Gupta & Stephen M. Miller & Mehmet Balcilar, 2014. "Forecasting US Real Private Residential Fixed Investment Using a Large Number of Predictors," Working papers 2014-10, University of Connecticut, Department of Economics.
  • Handle: RePEc:uct:uconnp:2014-10
    as

    Download full text from publisher

    File URL: http://web2.uconn.edu/economics/working/2014-10.pdf
    File Function: Full text
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Korobilis, Dimitris, 2013. "Hierarchical shrinkage priors for dynamic regressions with many predictors," International Journal of Forecasting, Elsevier, vol. 29(1), pages 43-59.
    2. Edward E. Leamer, 2007. "Housing is the business cycle," Proceedings - Economic Policy Symposium - Jackson Hole, Federal Reserve Bank of Kansas City, pages 149-233.
    3. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    4. Koop, Gary & Korobilis, Dimitris, 2011. "UK macroeconomic forecasting with many predictors: Which models forecast best and when do they do so?," Economic Modelling, Elsevier, vol. 28(5), pages 2307-2318, September.
    5. Joe Peek & James A. Wilcox, 2006. "Housing, Credit Constraints, and Macro Stability: The Secondary Mortgage Market and Reduced Cyclicality of Residential Investment," American Economic Review, American Economic Association, vol. 96(2), pages 135-140, May.
    6. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    7. Dynan, Karen E. & Elmendorf, Douglas W. & Sichel, Daniel E., 2006. "Can financial innovation help to explain the reduced volatility of economic activity?," Journal of Monetary Economics, Elsevier, vol. 53(1), pages 123-150, January.
    8. Korobilis, Dimitris, 2013. "Bayesian forecasting with highly correlated predictors," Economics Letters, Elsevier, vol. 118(1), pages 148-150.
    9. Jonas D. M. Fisher & Martin Gervais, 2007. "First-time home buyers and residential investment volatility," Working Paper Series WP-07-15, Federal Reserve Bank of Chicago.
    10. S. Mahendra Dev, 2008. "India," Chapters,in: Handbook on the South Asian Economies, chapter 1 Edward Elgar Publishing.
    11. Clements,Michael & Hendry,David, 1998. "Forecasting Economic Time Series," Cambridge Books, Cambridge University Press, number 9780521632423.
    12. Gary Koop & Simon Potter, 2004. "Forecasting in dynamic factor models using Bayesian model averaging," Econometrics Journal, Royal Economic Society, vol. 7(2), pages 550-565, December.
    13. Lynn Elaine Browne, 2000. "National and regional housing patterns," New England Economic Review, Federal Reserve Bank of Boston, issue Jul, pages 31-57.
    14. Rochelle M. Edge, 2000. "The effect of monetary policy on residential and structures investment under differential project planning and completion times," International Finance Discussion Papers 671, Board of Governors of the Federal Reserve System (U.S.).
    15. Harvey, David I & Leybourne, Stephen J & Newbold, Paul, 1998. "Tests for Forecast Encompassing," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 254-259, April.
    16. Rapach, David E. & Wohar, Mark E. & Rangvid, Jesper, 2005. "Macro variables and international stock return predictability," International Journal of Forecasting, Elsevier, vol. 21(1), pages 137-166.
    17. Frédérick Demers, 2005. "Modelling and Forecasting Housing Investment: The Case of Canada," Staff Working Papers 05-41, Bank of Canada.
    18. Rapach, David E. & Wohar, Mark E., 2006. "In-sample vs. out-of-sample tests of stock return predictability in the context of data mining," Journal of Empirical Finance, Elsevier, vol. 13(2), pages 231-247, March.
    19. Dunson, David B. & Herring, Amy H. & Engel, Stephanie M., 2008. "Bayesian Selection and Clustering of Polymorphisms in Functionally Related Genes," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 534-546, June.
    20. Hendry, David F., 2006. "Robustifying forecasts from equilibrium-correction systems," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 399-426.
    21. Luci Ellis & Laura Berger-Thomson, 2004. "Housing Construction Cycles and Interest Rates," Econometric Society 2004 Australasian Meetings 335, Econometric Society.
    22. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    23. Richard K. Green, 1997. "Follow the Leader: How Changes in Residential and Non-residential Investment Predict Changes in GDP," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 25(2), pages 253-270.
    24. Lunsford, Kurt G., 2015. "Forecasting residential investment in the United States," International Journal of Forecasting, Elsevier, vol. 31(2), pages 276-285.
    25. Jonathan McCarthy & Richard Peach, 2002. "Monetary policy transmission to residential investment," Economic Policy Review, Federal Reserve Bank of New York, issue May, pages 139-158.
    26. McCracken, Michael W., 2007. "Asymptotics for out of sample tests of Granger causality," Journal of Econometrics, Elsevier, vol. 140(2), pages 719-752, October.
    27. Pami Dua & Nishita Raje & Satyananda Sahoo, 2008. "Forecasting Interest Rates in India," Margin: The Journal of Applied Economic Research, National Council of Applied Economic Research, vol. 2(1), pages 1-41, March.
    28. Baghestani, Hamid, 2011. "Federal Reserve and private forecasts of growth in investment," Journal of Economics and Business, Elsevier, vol. 63(4), pages 290-305, July.
    29. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:ipg:wpaper:2014-459 is not listed on IDEAS
    2. repec:ipg:wpaper:2014-465 is not listed on IDEAS
    3. repec:ipg:wpaper:2014-585 is not listed on IDEAS
    4. repec:ipg:wpaper:2014-473 is not listed on IDEAS
    5. repec:ipg:wpaper:2014-466 is not listed on IDEAS
    6. repec:ipg:wpaper:2014-553 is not listed on IDEAS
    7. repec:ipg:wpaper:2014-476 is not listed on IDEAS

    More about this item

    Keywords

    Private residential investment; predictive regressions; factor-augmented models; Bayesian shrinkage; forecasting;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E22 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Investment; Capital; Intangible Capital; Capacity
    • E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uct:uconnp:2014-10. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mark McConnel). General contact details of provider: http://edirc.repec.org/data/deuctus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.