IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Are disaggregate data useful for factor analysis in forecasting French GDP?

  • Karim Barhoumi

    (Banque de France, DGEI-DCPM, Paris, France)

  • Olivier Darné
  • Laurent Ferrara

    (Banque de France, DGEI-DCPM, Paris, France)

This paper compares the GDP forecasting performance of alternative factor models based on monthly time series for the French economy. These models are based on static and dynamic principal components obtained using time and frequency domain methods. We question whether it is more appropriate to use aggregate or disaggregate data to extract the factors used in forecasting equations. The forecasting accuracy is evaluated for various forecast horizons considering both rolling and recursive schemes. We empirically show that static factors, estimated from a small database, lead to competitive results, especially for nowcasting. Copyright © 2009 John Wiley & Sons, Ltd.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://hdl.handle.net/10.1002/for.1162
File Function: Link to full text; subscription required
Download Restriction: no

Article provided by John Wiley & Sons, Ltd. in its journal Journal of Forecasting.

Volume (Year): 29 (2010)
Issue (Month): 1-2 ()
Pages: 132-144

as
in new window

Handle: RePEc:jof:jforec:v:29:y:2010:i:1-2:p:132-144
Contact details of provider: Web page: http://www3.interscience.wiley.com/cgi-bin/jhome/2966

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Danny Quah & Thomas J. Sargent, 1993. "A Dynamic Index Model for Large Cross Sections," NBER Chapters, in: Business Cycles, Indicators and Forecasting, pages 285-310 National Bureau of Economic Research, Inc.
  2. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
  3. Francisco Craveiro Dias & Maximiano Pinheiro & António Rua, 2008. "Forecasting Using Targeted Diffusion Indexes," Working Papers w200807, Banco de Portugal, Economics and Research Department.
  4. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2006. "A Two-step estimator for large approximate dynamic factor models based on Kalman filtering," THEMA Working Papers 2006-23, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
  5. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2008. "A Quasi Maximum Likelihood Approach for Large Approximate Dynamic Factor Models," Working Papers ECARES 2008_034, ULB -- Universite Libre de Bruxelles.
  6. D’Agostino, Antonello & Giannone, Domenico, 2006. "Comparing alternative predictors based on large-panel factor models," Working Paper Series 0680, European Central Bank.
  7. Forni, Mario, et al, 2001. "Coincident and Leading Indicators for the Euro Area," Economic Journal, Royal Economic Society, vol. 111(471), pages C62-85, May.
  8. Connor, Gregory & Korajczyk, Robert A, 1993. " A Test for the Number of Factors in an Approximate Factor Model," Journal of Finance, American Finance Association, vol. 48(4), pages 1263-91, September.
  9. Giannone, Domenico & Reichlin, Lucrezia & Small, David H., 2006. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Working Paper Series 0633, European Central Bank.
  10. Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Econometric Society World Congress 2000 Contributed Papers 1504, Econometric Society.
  11. Connor, Gregory & Korajczyk, Robert A., 1986. "Performance measurement with the arbitrage pricing theory : A new framework for analysis," Journal of Financial Economics, Elsevier, vol. 15(3), pages 373-394, March.
  12. Jörg Breitung & Sandra Eickmeier, 2006. "Dynamic factor models," AStA Advances in Statistical Analysis, Springer, vol. 90(1), pages 27-42, March.
  13. Boivin, Jean & Ng, Serena, 2005. "Understanding and Comparing Factor-Based Forecasts," MPRA Paper 836, University Library of Munich, Germany.
  14. Marc Hallin & Mario Forni & Marco Lippi & Lucrezia Reichlin, 2003. "Do financial variables help forecasting inflation and real activity in the Euro area ?," ULB Institutional Repository 2013/2123, ULB -- Universite Libre de Bruxelles.
  15. Connor, Gregory & Korajczyk, Robert A., 1988. "Risk and return in an equilibrium APT : Application of a new test methodology," Journal of Financial Economics, Elsevier, vol. 21(2), pages 255-289, September.
  16. Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-63, July.
  17. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2003. "The Generalized Dynamic Factor Model. One-Sided Estimation and Forecasting," LEM Papers Series 2003/13, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
  18. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2006. "A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 499-526.
  19. Barhoumi, K. & Rünstler, G. & Cristadoro, R. & Den Reijer, A. & Jakaitiene, A. & Jelonek, P. & Rua, A. & Ruth, K. & Benk, S. & Van Nieuwenhuyze, C., 2008. "Short-term forecasting of GDP using large monthly datasets: a pseudo real-time forecast evaluation exercise," Working papers 215, Banque de France.
  20. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 1999. "The Generalized Dynamic Factor Model: Identification and Estimation," CEPR Discussion Papers 2338, C.E.P.R. Discussion Papers.
  21. Kapetanios, George, 2004. "A note on modelling core inflation for the UK using a new dynamic factor estimation method and a large disaggregated price index dataset," Economics Letters, Elsevier, vol. 85(1), pages 63-69, October.
  22. Reichlin, Lucrezia, 2002. "Factor Models in Large Cross-Sections of Time Series," CEPR Discussion Papers 3285, C.E.P.R. Discussion Papers.
  23. Anindya Banerjee & Massimiliano Marcellino & Igor Masten, 2003. "Leading Indicators for Euro-area Inflation and GDP Growth," Working Papers 235, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  24. Calista Cheung & Frédérick Demers, 2007. "Evaluating Forecasts from Factor Models for Canadian GDP Growth and Core Inflation," Working Papers 07-8, Bank of Canada.
  25. George Kapetanios & Gonzalo Camba-Mendez, 2005. "Forecasting euro area inflation using dynamic factor measures of underlying inflation," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(7), pages 491-503.
  26. Sandra Eickmeier & Christina Ziegler, 2008. "How successful are dynamic factor models at forecasting output and inflation? A meta-analytic approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 237-265.
  27. Jean Boivin & Serena Ng, 2003. "Are More Data Always Better for Factor Analysis?," NBER Working Papers 9829, National Bureau of Economic Research, Inc.
  28. Christian Schumacher, 2007. "Forecasting German GDP using alternative factor models based on large datasets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(4), pages 271-302.
  29. Stock, J.H. & Watson, M.W., 1989. "New Indexes Of Coincident And Leading Economic Indicators," Papers 178d, Harvard - J.F. Kennedy School of Government.
  30. Forni, Mario & Lippi, Marco, 2001. "The Generalized Dynamic Factor Model: Representation Theory," Econometric Theory, Cambridge University Press, vol. 17(06), pages 1113-1141, December.
  31. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2004. "The generalized dynamic factor model consistency and rates," Journal of Econometrics, Elsevier, vol. 119(2), pages 231-255, April.
  32. Borus Jungbacker & Siem Jan Koopman, 2008. "Likelihood-based Analysis for Dynamic Factor Models," Tinbergen Institute Discussion Papers 08-007/4, Tinbergen Institute, revised 20 Mar 2014.
  33. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
  34. Bai, Jushan & Ng, Serena, 2007. "Determining the Number of Primitive Shocks in Factor Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 52-60, January.
  35. Thomas J. Sargent & Christopher A. Sims, 1977. "Business cycle modeling without pretending to have too much a priori economic theory," Working Papers 55, Federal Reserve Bank of Minneapolis.
  36. Ard H.J. den Reijer, 2005. "Forecasting Dutch GDP using Large Scale Factor Models," DNB Working Papers 028, Netherlands Central Bank, Research Department.
  37. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
  38. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-62, April.
  39. Stock, James H. & Watson, Mark W., 2006. "Forecasting with Many Predictors," Handbook of Economic Forecasting, Elsevier.
  40. Martin Schneider & Martin Spitzer, 2004. "Forecasting Austrian GDP using the generalized dynamic factor model," Working Papers 89, Oesterreichische Nationalbank (Austrian Central Bank).
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:jof:jforec:v:29:y:2010:i:1-2:p:132-144. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing)

or (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.