IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Leading Indicators for Euro-area Inflation and GDP Growth

  • Anindya Banerjee
  • Massimiliano Marcellino
  • Igor Masten

In this paper we evaluate the role of a set of variables as leading indicators for Euro-area inflation and GDP growth. Our evaluation is based on using the variables in the ECB Euroarea model database, plus a set of similar variables for the U.S. We compare the forecasting performance of each indicator with that of purely autoregressive models, using an evaluation procedure that is particularly relevant for policy making. The evaluation is conducted both expost and in a pseudo real time context, for several forecast horizons, and using both recursive and rolling estimation. We also analyze three different approaches to combining the information from several indicators. First, we discuss the use as indicators of the estimated factors from a dynamic factor model for all the indicators. Second, an automated model selection procedure is applied to models with a large set of indicators. Third, we consider pooling the single indicator forecasts. The results indicate that single indicator forecasts are on average better than those derived from more complicated methods, but for them to beat the autoregression a different indicator has to be used in each period. A simple real-time procedure for indicator-selection produces good results.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: ftp://ftp.igier.uni-bocconi.it/wp/2003/235.pdf
Our checks indicate that this address may not be valid because: 500 Failed to connect to FTP server ftp.igier.uni-bocconi.it: Net::FTP: Bad hostname 'ftp.igier.uni-bocconi.it'. If this is indeed the case, please notify ()


Download Restriction: no

Paper provided by IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University in its series Working Papers with number 235.

as
in new window

Length:
Date of creation: 2003
Date of revision:
Handle: RePEc:igi:igierp:235
Contact details of provider: Postal: via Rontgen, 1 - 20136 Milano (Italy)
Phone: 0039-02-58363301
Fax: 0039-02-58363302
Web page: http://www.igier.unibocconi.it/

Order Information: Web: http://www.igier.unibocconi.it/en/papers/index.htm Email:


References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Krolzig, Hans-Martin & Hendry, David F., 2001. "Computer automation of general-to-specific model selection procedures," Journal of Economic Dynamics and Control, Elsevier, vol. 25(6-7), pages 831-866, June.
  2. Fagan, Gabriel & Henry, Jerome & Mestre, Ricardo, 2005. "An area-wide model for the euro area," Economic Modelling, Elsevier, vol. 22(1), pages 39-59, January.
  3. Massimiliano Marcellino, . "Forecasting EMU macroeconomic variables," Working Papers 216, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  4. Michael Artis & Anindya Banerjee & Massimiliano Marcellino, . "Factor forecasts for the UK," Working Papers 203, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  5. James H. Stock & Mark W. Watson, 2001. "Forecasting output and inflation: the role of asset prices," Proceedings, Federal Reserve Bank of San Francisco, issue Mar.
  6. Kevin D. Hoover & Stephen J. Perez, . "Data Mining Reconsidered: Encompassing And The General-To-Specific Approach To Specification Search," Department of Economics 97-27, California Davis - Department of Economics.
  7. Anindya Banerjee & Massimiliano Marcellino, 2003. "Are There Any Reliable Leading Indicators for U.S. Inflation and GDP Growth?," Working Papers 236, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  8. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2003. "Macroeconomic forecasting in the Euro area: Country specific versus area-wide information," European Economic Review, Elsevier, vol. 47(1), pages 1-18, February.
  9. Michael P. Clements & David F. Hendry, 2001. "Forecasting Non-Stationary Economic Time Series," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262531895, June.
  10. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
  11. Massimiliano Marcellino, . "Forecast pooling for short time series of macroeconomic variables," Working Papers 212, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  12. Thomas J. Sargent & Christopher A. Sims, 1977. "Business cycle modeling without pretending to have too much a priori economic theory," Working Papers 55, Federal Reserve Bank of Minneapolis.
  13. James H. Stock & Mark W. Watson, 1998. "Diffusion Indexes," NBER Working Papers 6702, National Bureau of Economic Research, Inc.
  14. David Hendry & Michael Clements, 2001. "Pooling of Forecasts," Economics Series Working Papers 2002-W09, University of Oxford, Department of Economics.
  15. Beyer, A. & Doornik, J.A. & Hendry, D.F., 2000. "Constructing Historical Euro-Zone Data," Economics Working Papers eco2000/10, European University Institute.
  16. Anindya Banerjee & Massimiliano Marcellino & Igor Masten, 2005. "Leading Indicators for Euro-area Inflation and GDP Growth," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 785-813, December.
  17. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
  18. Stephen G. Cecchetti & Rita S. Chu & Charles Steindel, 2000. "The unreliability of inflation indicators," Current Issues in Economics and Finance, Federal Reserve Bank of New York, vol. 6(Apr).
  19. Pesaran, M Hashem & Timmermann, Allan, 1995. " Predictability of Stock Returns: Robustness and Economic Significance," Journal of Finance, American Finance Association, vol. 50(4), pages 1201-28, September.
  20. David F. Hendry & Hans-Martin Krolzig, 1999. "Improving on 'Data mining reconsidered' by K.D. Hoover and S.J. Perez," Econometrics Journal, Royal Economic Society, vol. 2(2), pages 202-219.
  21. Fagan, Gabriel & Henry, Jérôme & Mestre, Ricardo, 2001. "An area-wide model (AWM) for the euro area," Working Paper Series 0042, European Central Bank.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:igi:igierp:235. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.