IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Short-term forecasting of GDP using large monthly datasets – A pseudo real-time forecast evaluation exercise

  • K. Barhoumi
  • S. Benk
  • R. Cristadoro
  • A. Den Reijer
  • A. Jakaitiene
  • P. Jelonek
  • A. Rua
  • K. Ruth
  • C. Van Nieuwenhuyze
  • G. Rünstler

    ()

    (ECB, DG Research)

This paper evaluates different models for the short-term forecasting of real GDP growth in ten selected European countries and the euro area as a whole. Purely quarterly models are compared with models designed to exploit early releases of monthly indicators for the nowcast and forecast of quarterly GDP growth. Amongst the latter, we consider small bridge equations and forecast equations in which the bridging between monthly and quarterly data is achieved through a regression on factors extracted from large monthly datasets. The forecasting exercise is performed in a simulated real-time context, which takes account of publication lags in the individual series. In general, we find that models that exploit monthly information outperform models that use purely quarterly data and, amongst the former, factor models perform best.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.nbb.be/doc/oc/repec/reswpp/wp133En.pdf
Download Restriction: no

Paper provided by National Bank of Belgium in its series Working Paper Research with number 133.

as
in new window

Length: 31 pages
Date of creation: Jun 2008
Date of revision:
Handle: RePEc:nbb:reswpp:200806-17
Contact details of provider: Postal: Boulevard de Berlaimont 14, B-1000 Bruxelles
Phone: (+ 32) (0) 2 221 25 34
Fax: (+ 32) (0) 2 221 31 62
Web page: http://www.nbb.be
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Baffigi, Alberto & Golinelli, Roberto & Parigi, Giuseppe, 2004. "Bridge models to forecast the euro area GDP," International Journal of Forecasting, Elsevier, vol. 20(3), pages 447-460.
  2. Banbura, Marta & Rünstler, Gerhard, 2011. "A look into the factor model black box: Publication lags and the role of hard and soft data in forecasting GDP," International Journal of Forecasting, Elsevier, vol. 27(2), pages 333-346, April.
  3. Angelini, Elena & Camba-Mendez, Gonzalo & Giannone, Domenico & Reichlin, Lucrezia & Rünstler, Gerhard, 2008. "Short-term Forecasts of Euro Area GDP Growth," CEPR Discussion Papers 6746, C.E.P.R. Discussion Papers.
  4. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2003. "Macroeconomic forecasting in the Euro area: Country specific versus area-wide information," European Economic Review, Elsevier, vol. 47(1), pages 1-18, February.
  5. Knut Aastveit & Tørres Trovik, 2012. "Nowcasting norwegian GDP: the role of asset prices in a small open economy," Empirical Economics, Springer, vol. 42(1), pages 95-119, February.
  6. Domenico Giannone & Lucrezia Reichlin & David Small, 2005. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Finance and Economics Discussion Series 2005-42, Board of Governors of the Federal Reserve System (U.S.).
  7. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
  8. Domenico Giannone & Lucrezia Reichlin & Luca Sala, 2005. "Monetary Policy in Real Time," Working Papers 284, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    • Domenico Giannone & Lucrezia Reichlin & Luca Sala, 2005. "Monetary Policy in Real Time," NBER Chapters, in: NBER Macroeconomics Annual 2004, Volume 19, pages 161-224 National Bureau of Economic Research, Inc.
  9. Ard H.J. den Reijer, 2005. "Forecasting Dutch GDP using Large Scale Factor Models," DNB Working Papers 028, Netherlands Central Bank, Research Department.
  10. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
  11. D'Agostino, Antonello & Giannone, Domenico, 2007. "Comparing Alternative Predictors Based on Large-Panel Factor Models," CEPR Discussion Papers 6564, C.E.P.R. Discussion Papers.
  12. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2003. "The Generalized Dynamic Factor Model. One-Sided Estimation and Forecasting," LEM Papers Series 2003/13, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
  13. Catherine Doz & Lucrezia Reichlin, 2011. "A two-step estimator for large approximate dynamic factor models based on Kalman filtering," Post-Print hal-00844811, HAL.
  14. Forni, Mario & Giannone, Domenico & Lippi, Marco & Reichlin, Lucrezia, 2009. "Opening The Black Box: Structural Factor Models With Large Cross Sections," Econometric Theory, Cambridge University Press, vol. 25(05), pages 1319-1347, October.
  15. Durbin, James & Koopman, Siem Jan, 2001. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, number 9780198523543, March.
  16. Filippo Altissimo & Riccardo Cristadoro & Mario Forni & Marco Lippi & Giovanni Veronese, 2010. "New Eurocoin: Tracking Economic Growth in Real Time," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1024-1034, November.
  17. O. De Bandt & E. Michaux & C. Bruneau & A. Flageollet, 2007. "Forecasting inflation using economic indicators: the case of France," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(1), pages 1-22.
  18. repec:cup:cbooks:9780521634809 is not listed on IDEAS
  19. Troy Matheson, 2007. "An analysis of the informational content of New Zealand data releases: the importance of business opinion surveys," Reserve Bank of New Zealand Discussion Paper Series DP2007/13, Reserve Bank of New Zealand.
  20. D'Agostino, Antonello & Giannone, Domenico & Surico, Paolo, 2007. "(Un)Predictability and Macroeconomic Stability," CEPR Discussion Papers 6594, C.E.P.R. Discussion Papers.
  21. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
  22. James H. Stock & Mark W. Watson, 1999. "Forecasting Inflation," NBER Working Papers 7023, National Bureau of Economic Research, Inc.
  23. Christian Schumacher, 2007. "Forecasting German GDP using alternative factor models based on large datasets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(4), pages 271-302.
  24. Rünstler, Gerhard & Sédillot, Franck, 2003. "Short-term estimates of euro area real GDP by means of monthly data," Working Paper Series 0276, European Central Bank.
  25. Michael ARTIS & Anindya BANERJEE & Massimiliano MARCELLINO, 2001. "Factor Forecasts for the UK," Economics Working Papers ECO2001/15, European University Institute.
  26. Angelini, Elena & Bańbura, Marta & Rünstler, Gerhard, 2008. "Estimating and forecasting the euro area monthly national accounts from a dynamic factor model," Working Paper Series 0953, European Central Bank.
  27. Bai, Jushan & Ng, Serena, 2007. "Determining the Number of Primitive Shocks in Factor Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 52-60, January.
  28. Filippo Altissimo & Antonio Bassanetti & Riccardo Cristadoro & Mario Forni & Marco Lippi & Lucrezia Reichlin & Giovanni Veronese, 2001. "A real time coincident indicator of the euro area business cycle," Temi di discussione (Economic working papers) 436, Bank of Italy, Economic Research and International Relations Area.
  29. Kitchen, John & Monaco, Ralph, 2003. "Real-Time Forecasting in Practice: The U.S. Treasury Staff's Real-Time GDP Forecast System," MPRA Paper 21068, University Library of Munich, Germany, revised Oct 2003.
  30. Phillip Arestis & Michelle Baddeley & John S.L. McCombie (ed.), 2007. "Economic Growth," Books, Edward Elgar, number 3958.
  31. Duarte, Claudia & Rua, Antonio, 2007. "Forecasting inflation through a bottom-up approach: How bottom is bottom?," Economic Modelling, Elsevier, vol. 24(6), pages 941-953, November.
  32. Roberto S. Mariano & Yasutomo Murasawa, 2003. "A new coincident index of business cycles based on monthly and quarterly series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 427-443.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:nbb:reswpp:200806-17. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.