IDEAS home Printed from https://ideas.repec.org/p/cpr/ceprdp/2509.html
   My bibliography  Save this paper

The Generalized Dynamic Factor Model: Representation Theory

Author

Listed:
  • Forni, Mario
  • Lippi, Marco

Abstract

This paper, along with the companion paper Forni, Hallin, Lippi and Reichlin (1999), introduces a new model-the generalized dynamic factor model-for the empirical analysis of financial and macroeconomic data sets characterized by a large number of observations both cross-section and over time. This model provides a generalization of the static approximate factor model of Chamberlain (1983) and Chamberlain and Rothschild (1983) by allowing serial correlation within and across individual processes, and of the dynamic factor model of Sargent and Sims (1977) and Geweke (1977) by allowing for non-orthogonal idiosyncratic terms. While the companion paper concentrates on identification and estimation, here we give a full characterization of the generalized dynamic factor model in terms of observable spectral density matrices, thus laying a firm basis for empirical implementation of the model. Moreover, the common factors are obtained as limits of linear combinations of dynamic principal components. Thus the paper reconciles two seemingly unrelated statistical constructions.

Suggested Citation

  • Forni, Mario & Lippi, Marco, 2000. "The Generalized Dynamic Factor Model: Representation Theory," CEPR Discussion Papers 2509, C.E.P.R. Discussion Papers.
  • Handle: RePEc:cpr:ceprdp:2509
    as

    Download full text from publisher

    File URL: http://www.cepr.org/active/publications/discussion_papers/dp.php?dpno=2509
    Download Restriction: CEPR Discussion Papers are free to download for our researchers, subscribers and members. If you fall into one of these categories but have trouble downloading our papers, please contact us at subscribers@cepr.org

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    More about this item

    Keywords

    Dynamic Factor Structure; Dynamic Principal Components; Idiosyncratic Components; Large Cross-Sections;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C43 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Index Numbers and Aggregation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cpr:ceprdp:2509. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.