IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Short-term forecasting of GDP using large monthly datasets - a pseudo real-time forecast evaluation exercise

  • Karim Barhoumi
  • Szilard Benk
  • Riccardo Cristadoro
  • Ard Den Reijer
  • Audrone Jakaitiene
  • Piotr Jelonek
  • António Rua
  • Gerhard Rünstler
  • Karsten Ruth
  • Christophe Van Nieuwenhuyze

This paper evaluates different models for the short-term forecasting of real GDP growth in ten selected European countries and the euro area as a whole. Purely quarterly models are compared with models designed to exploit early releases of monthly indicators for the nowcast and forecast of quarterly GDP growth. Amongst the latter, we consider small bridge equations and forecast equations in which the bridging between monthly and quarterly data is achieved through a regression on factors extracted from large monthly datasets. The forecasting exercise is performed in a simulated real-time context, which takes account of publication lags in the individual series. In general, we find that models that exploit monthly information outperform models that use purely quarterly data and, amongst the former, factor models perform best. JEL Classification: E37, C53.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by European Central Bank in its series Occasional Paper Series with number 84.

in new window

Length: 23 pages
Date of creation: Apr 2008
Date of revision:
Handle: RePEc:ecb:ecbops:20080084
Contact details of provider: Postal: 60640 Frankfurt am Main, Germany
Phone: +49 69 1344 0
Fax: +49 69 1344 6000
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
  2. Domenico Giannone & Lucrezia Reichlin & David H. Small, 2005. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Finance and Economics Discussion Series 2005-42, Board of Governors of the Federal Reserve System (U.S.).
  3. D’Agostino, Antonello & Giannone, Domenico & Surico, Paolo, 2006. "(Un)Predictability and macroeconomic stability," Working Paper Series 0605, European Central Bank.
  4. Domenico Giannone & Lucrezia Reichlin & Luca Sala, 2005. "Monetary policy in real time," ULB Institutional Repository 2013/6401, ULB -- Universite Libre de Bruxelles.
    • Domenico Giannone & Lucrezia Reichlin & Luca Sala, 2005. "Monetary Policy in Real Time," NBER Chapters, in: NBER Macroeconomics Annual 2004, Volume 19, pages 161-224 National Bureau of Economic Research, Inc.
  5. Bruneau, C. & De Bandt, O. & Flageollet, A. & Michaux, E., 2003. "Forecasting Inflation using Economic Indicators: the Case of France," Working papers 101, Banque de France.
  6. Elena Angelini & Gonzalo Camba-Mendez & Domenico Giannone & Lucrezia Reichlin & Gerhard Rünstler, 2008. "Short-Term Forecasts of Euro Area GDP Growth," Working Papers ECARES ECARES 2008-035, ULB -- Universite Libre de Bruxelles.
  7. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2006. "A Two-step estimator for large approximate dynamic factor models based on Kalman filtering," THEMA Working Papers 2006-23, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
  8. Altissimo, Filippo & Cristadoro, Riccardo & Forni, Mario & Lippi, Marco & Veronese, Giovanni, 2006. "New EuroCOIN: Tracking Economic Growth in Real Time," CEPR Discussion Papers 5633, C.E.P.R. Discussion Papers.
  9. Christian Schumacher, 2007. "Forecasting German GDP using alternative factor models based on large datasets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(4), pages 271-302.
  10. D'Agostino, Antonello & Giannone, Domenico, 2007. "Comparing Alternative Predictors Based on Large-Panel Factor Models," CEPR Discussion Papers 6564, C.E.P.R. Discussion Papers.
  11. Knut Aastveit & Tørres Trovik, 2012. "Nowcasting norwegian GDP: the role of asset prices in a small open economy," Empirical Economics, Springer, vol. 42(1), pages 95-119, February.
  12. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
  13. Clements,Michael & Hendry,David, 1998. "Forecasting Economic Time Series," Cambridge Books, Cambridge University Press, number 9780521634809.
  14. Bai, Jushan & Ng, Serena, 2007. "Determining the Number of Primitive Shocks in Factor Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 52-60, January.
  15. Kitchen, John & Monaco, Ralph, 2003. "Real-Time Forecasting in Practice: The U.S. Treasury Staff's Real-Time GDP Forecast System," MPRA Paper 21068, University Library of Munich, Germany, revised Oct 2003.
  16. Forni, Mario & Giannone, Domenico & Lippi, Marco & Reichlin, Lucrezia, 2009. "Opening The Black Box: Structural Factor Models With Large Cross Sections," Econometric Theory, Cambridge University Press, vol. 25(05), pages 1319-1347, October.
  17. Filippo Altissimo & Antonio Bassanetti & Riccardo Cristadoro & Mario Forni & Marco Lippi & Lucrezia Reichlin & Giovanni Veronese, 2001. "A real time coincident indicator of the euro area business cycle," Temi di discussione (Economic working papers) 436, Bank of Italy, Economic Research and International Relations Area.
  18. Michael Artis & Anindya Banerjee & Massimiliano Marcellino, . "Factor forecasts for the UK," Working Papers 203, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  19. Bańbura, Marta & Rünstler, Gerhard, 2011. "A look into the factor model black box: Publication lags and the role of hard and soft data in forecasting GDP," International Journal of Forecasting, Elsevier, vol. 27(2), pages 333-346.
  20. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
  21. Angelini, Elena & Bańbura, Marta & Rünstler, Gerhard, 2008. "Estimating and forecasting the euro area monthly national accounts from a dynamic factor model," Working Paper Series 0953, European Central Bank.
  22. Phillip Arestis & Michelle Baddeley & John S.L. McCombie (ed.), 2007. "Economic Growth," Books, Edward Elgar, number 3958.
  23. James H. Stock & Mark W. Watson, 1999. "Forecasting Inflation," NBER Working Papers 7023, National Bureau of Economic Research, Inc.
  24. Roberto S. Mariano & Yasutomo Murasawa, 2003. "A new coincident index of business cycles based on monthly and quarterly series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 427-443.
  25. Troy Matheson, 2007. "An analysis of the informational content of New Zealand data releases: the importance of business opinion surveys," Reserve Bank of New Zealand Discussion Paper Series DP2007/13, Reserve Bank of New Zealand.
  26. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2002. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," CEPR Discussion Papers 3432, C.E.P.R. Discussion Papers.
  27. Ard H.J. den Reijer, 2005. "Forecasting Dutch GDP using Large Scale Factor Models," DNB Working Papers 028, Netherlands Central Bank, Research Department.
  28. Massimiliano Marcellino & James H. Stock & Mark W. Watson, . "Macroeconomic Forecasting in the Euro Area: Country Specific versus Area-Wide Information," Working Papers 201, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  29. Durbin, James & Koopman, Siem Jan, 2001. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, number 9780198523543, July.
  30. Duarte, Claudia & Rua, Antonio, 2007. "Forecasting inflation through a bottom-up approach: How bottom is bottom?," Economic Modelling, Elsevier, vol. 24(6), pages 941-953, November.
  31. Baffigi, Alberto & Golinelli, Roberto & Parigi, Giuseppe, 2004. "Bridge models to forecast the euro area GDP," International Journal of Forecasting, Elsevier, vol. 20(3), pages 447-460.
  32. Rünstler, Gerhard & Sédillot, Franck, 2003. "Short-term estimates of euro area real GDP by means of monthly data," Working Paper Series 0276, European Central Bank.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ecb:ecbops:20080084. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Official Publications)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.