IDEAS home Printed from https://ideas.repec.org/a/jof/jforec/v26y2007i1p1-22.html
   My bibliography  Save this article

Forecasting inflation using economic indicators: the case of France

Author

Listed:
  • O. De Bandt

    (Banque de France, Paris, France)

  • E. Michaux

    (HSBC Halbis Partners, Paris, France, and Banque de France, Paris, France)

  • C. Bruneau

    (Banque de France and University of Paris X, Paris, France)

  • A. Flageollet

    (Banque de France and University of Paris X, Paris, France)

Abstract

In order to provide short-run forecasts of headline and core HICP inflation for France, we assess the forecasting performance of a large set of economic indicators, individually and jointly, as well as using dynamic factor models. We run out-of-sample forecasts implementing the Stock and Watson (1999) methodology. We find that, according to usual statistical criteria, the combination of several indicators-in particular those derived from surveys-provides better results than factor models, even after pre-selection of the variables included in the panel. However, factors included in VAR models exhibit more stable forecasting performance over time. Results for the HICP excluding unprocessed food and energy are very encouraging. Moreover, we show that the aggregation of forecasts on subcomponents exhibits the best performance for projecting total inflation and that it is robust to data snooping. Copyright © 2007 John Wiley & Sons, Ltd.

Suggested Citation

  • O. De Bandt & E. Michaux & C. Bruneau & A. Flageollet, 2007. "Forecasting inflation using economic indicators: the case of France," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(1), pages 1-22.
  • Handle: RePEc:jof:jforec:v:26:y:2007:i:1:p:1-22
    DOI: 10.1002/for.1001
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/for.1001
    File Function: Link to full text; subscription required
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Elena Angelini & Jérôme Henry & Ricardo Mestre, 2001. "Diffusion index-based inflation forecasts for the euro area," BIS Papers chapters,in: Bank for International Settlements (ed.), Empirical studies of structural changes and inflation, volume 3, pages 109-138 Bank for International Settlements.
    2. Cristadoro, Riccardo & Forni, Mario & Reichlin, Lucrezia & Veronese, Giovanni, 2005. "A Core Inflation Indicator for the Euro Area," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 539-560, June.
    3. Kilian, Lutz, 1999. "Exchange Rates and Monetary Fundamentals: What Do We Learn from Long-Horizon Regressions?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(5), pages 491-510, Sept.-Oct.
    4. Clark, Todd E. & McCracken, Michael W., 2001. "Tests of equal forecast accuracy and encompassing for nested models," Journal of Econometrics, Elsevier, vol. 105(1), pages 85-110, November.
    5. Anindya Banerjee & Massimiliano Marcellino & Igor Masten, 2004. "Forecasting Macroeconomic Variables for the Acceding Countries," Working Papers 260, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    6. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    7. Ard Reijer & Peter Vlaar, 2006. "Forecasting Inflation: An Art as Well as a Science!," De Economist, Springer, vol. 154(1), pages 19-40, March.
    8. Harvey, David I & Leybourne, Stephen J & Newbold, Paul, 1998. "Tests for Forecast Encompassing," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 254-259, April.
    9. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
    10. Michael Artis & Anindya Banerjee & Massimiliano Marcellino, "undated". "Factor forecasts for the UK," Working Papers 203, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    11. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2006. "A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 499-526.
    12. Todd E. Clark & Michael W. McCracken, 2001. "Evaluating long-horizon forecasts," Research Working Paper RWP 01-14, Federal Reserve Bank of Kansas City.
    13. Stephen G. Cecchetti & Rita S. Chu & Charles Steindel, 2000. "The unreliability of inflation indicators," Current Issues in Economics and Finance, Federal Reserve Bank of New York, vol. 6(Apr).
    14. Hubrich, Kirstin, 2005. "Forecasting euro area inflation: Does aggregating forecasts by HICP component improve forecast accuracy?," International Journal of Forecasting, Elsevier, vol. 21(1), pages 119-136.
    15. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    16. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
    17. Hendry, David F., 1995. "Dynamic Econometrics," OUP Catalogue, Oxford University Press, number 9780198283164.
    18. Friedrich Fritzer & Gabriel Moser & Johann Scharler, 2002. "Forecasting Austrian HICP and its Components using VAR and ARIMA Models," Working Papers 73, Oesterreichische Nationalbank (Austrian Central Bank).
    19. James H. Stock & Mark W. Watson, 1998. "Diffusion Indexes," NBER Working Papers 6702, National Bureau of Economic Research, Inc.
    20. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2003. "Macroeconomic forecasting in the Euro area: Country specific versus area-wide information," European Economic Review, Elsevier, vol. 47(1), pages 1-18, February.
    21. Cláudia Duarte & António Rua, 2005. "Forecasting Inflation Through a Bottom-Up Approach: The Portuguese Case," Working Papers w200502, Banco de Portugal, Economics and Research Department.
    22. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
    23. Andrew Atkeson & Lee E. Ohanian, 2001. "Are Phillips curves useful for forecasting inflation?," Quarterly Review, Federal Reserve Bank of Minneapolis, issue Win, pages 2-11.
    24. Michael P. Clements & David F. Hendry, 2001. "Forecasting Non-Stationary Economic Time Series," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262531895, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sandra Eickmeier & Christina Ziegler, 2008. "How successful are dynamic factor models at forecasting output and inflation? A meta-analytic approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 237-265.
    2. Colin Bermingham & Antonello D’Agostino, 2014. "Understanding and forecasting aggregate and disaggregate price dynamics," Empirical Economics, Springer, vol. 46(2), pages 765-788, March.
    3. WAN, Shui-Ki & WANG, Shin-Huei & WOO, Chi-Keung, 2012. "Total tourist arrival forecast: aggregation vs. disaggregation," CORE Discussion Papers 2012039, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Hendry, David F. & Hubrich, Kirstin, 2011. "Combining Disaggregate Forecasts or Combining Disaggregate Information to Forecast an Aggregate," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(2), pages 216-227.
    5. Clark, Todd E. & McCracken, Michael W., 2015. "Nested forecast model comparisons: A new approach to testing equal accuracy," Journal of Econometrics, Elsevier, vol. 186(1), pages 160-177.
    6. Van Nieuwenhuyze, Christophe & Ruth, Karsten & Rua, António & Jelonek, Piotr & Jakaitiene, Audrone & Den Reijer, Ard & Cristadoro, Riccardo & Rünstler, Gerhard & Benk, Szilard & Barhoumi, Karim, 2008. "Short-term forecasting of GDP using large monthly datasets: a pseudo real-time forecast evaluation exercise," Occasional Paper Series 84, European Central Bank.
    7. Ibarra, Raul, 2012. "Do disaggregated CPI data improve the accuracy of inflation forecasts?," Economic Modelling, Elsevier, vol. 29(4), pages 1305-1313.
    8. Ard H.J. den Reijer, 2005. "Forecasting Dutch GDP using Large Scale Factor Models," DNB Working Papers 028, Netherlands Central Bank, Research Department.
    9. Marc Hallin & Roman Liska, 2008. "Dynamic Factors in the Presence of Block Structure," Economics Working Papers ECO2008/22, European University Institute.
    10. Eliana González & Luis F. Melo & Viviana Monroy & Brayan Rojas, 2009. "A Dynamic Factor Model For The Colombian Inflation," BORRADORES DE ECONOMIA 005273, BANCO DE LA REPÚBLICA.
    11. D'Elia, Enrico, 2010. "Predictions vs preliminary sample estimates," MPRA Paper 36070, University Library of Munich, Germany.
    12. Ard Reijer & Peter Vlaar, 2006. "Forecasting Inflation: An Art as Well as a Science!," De Economist, Springer, vol. 154(1), pages 19-40, March.
    13. António Rua, 2011. "A wavelet approach for factor‐augmented forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(7), pages 666-678, November.
    14. Célérier, C., 2009. "Forecasting inflation in France," Working papers 262, Banque de France.
    15. Tallman, Ellis W. & Zaman, Saeed, 2017. "Forecasting inflation: Phillips curve effects on services price measures," International Journal of Forecasting, Elsevier, vol. 33(2), pages 442-457.
    16. Aron, Janine & Muellbauer, John, 2012. "Improving forecasting in an emerging economy, South Africa: Changing trends, long run restrictions and disaggregation," International Journal of Forecasting, Elsevier, vol. 28(2), pages 456-476.
    17. Hallin, Marc & Liska, Roman, 2011. "Dynamic factors in the presence of blocks," Journal of Econometrics, Elsevier, vol. 163(1), pages 29-41, July.
    18. G. Rünstler & K. Barhoumi & S. Benk & R. Cristadoro & A. Den Reijer & A. Jakaitiene & P. Jelonek & A. Rua & K. Ruth & C. Van Nieuwenhuyze, 2009. "Short-term forecasting of GDP using large datasets: a pseudo real-time forecast evaluation exercise," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(7), pages 595-611.
    19. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2014. "Dynamic factor models: A review of the literature," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 73-107.

    More about this item

    JEL classification:

    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jof:jforec:v:26:y:2007:i:1:p:1-22. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.