IDEAS home Printed from https://ideas.repec.org/p/ptu/wpaper/w200502.html
   My bibliography  Save this paper

Forecasting Inflation Through a Bottom-Up Approach: The Portuguese Case

Author

Listed:
  • Cláudia Duarte
  • António Rua

Abstract

The aim of this paper is to assess inflation forecasting acurracy over the short-term horizon using Consumer Price Index (CPI) disaggregated data. That is, aggregating forecasts is compared with aggregate forecasting. In particular, three questions are addressed: i) one should bottom-up or not, ii) how bottom one should go and iii) how one should model at the bottom. In contrast with the literature, di erent levels of data dis-aggregation are allowed, namely a higher disaggregation level than the one considered up to now. Moreover, both univariate and multivariate models are considered, such as SARIMA and SARIMAX models with dynamic common factors. An out-of-sample forecast comparison (up to twelve months ahead) is done using Portuguese CPI dataset. Aggregating the forecasts seems to be better than aggregate forecasting up to a five-months ahead horizon. Moreover, this improvement increases with the disaggregation level and the multivariate modelling outperforms the univariate one in the very short-run.

Suggested Citation

  • Cláudia Duarte & António Rua, 2005. "Forecasting Inflation Through a Bottom-Up Approach: The Portuguese Case," Working Papers w200502, Banco de Portugal, Economics and Research Department.
  • Handle: RePEc:ptu:wpaper:w200502
    as

    Download full text from publisher

    File URL: https://www.bportugal.pt/sites/default/files/anexos/papers/wp200502.pdf
    Download Restriction: no

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. O. De Bandt & E. Michaux & C. Bruneau & A. Flageollet, 2007. "Forecasting inflation using economic indicators: the case of France," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(1), pages 1-22.

    More about this item

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C43 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Index Numbers and Aggregation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ptu:wpaper:w200502. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (DEE-NTDD). General contact details of provider: http://edirc.repec.org/data/bdpgvpt.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.