IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Forecasting Economic Aggregates by Disaggregates

  • Hendry, David F
  • Hubrich, Kirstin

We explore whether forecasting an aggregate variable using information on its disaggregate components can improve the prediction mean squared error over first forecasting the disaggregates and then aggregating those forecasts, or, alternatively, over using only lagged aggregate information in forecasting the aggregate. We show theoretically that the first method of forecasting the aggregate should outperform the alternative methods in population. We investigate whether this theoretical prediction can explain our empirical findings and analyse why forecasting the aggregate using information on its disaggregate components improves forecast accuracy of the aggregate forecast of euro area and US inflation in some situations, but not in others.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: CEPR Discussion Papers are free to download for our researchers, subscribers and members. If you fall into one of these categories but have trouble downloading our papers, please contact us at

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Paper provided by C.E.P.R. Discussion Papers in its series CEPR Discussion Papers with number 5485.

in new window

Date of creation: Jan 2006
Date of revision:
Handle: RePEc:cpr:ceprdp:5485
Contact details of provider: Postal: Centre for Economic Policy Research, 77 Bastwick Street, London EC1V 3PZ.
Phone: 44 - 20 - 7183 8801
Fax: 44 - 20 - 7183 8820

Order Information: Email:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Inoue, Atsushi & Kilian, Lutz, 2003. "On the Selection of Forecasting Models," CEPR Discussion Papers 3809, C.E.P.R. Discussion Papers.
  2. Raffaella Giacomini & Halbert White, 2003. "Tests of Conditional Predictive Ability," Econometrics 0308001, EconWPA.
  3. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
  4. Pesaran, M Hashem & Pierse, Richard G & Kumar, Mohan S, 1989. "Econometric Analysis of Aggregation in the Context of Linear Prediction Models," Econometrica, Econometric Society, vol. 57(4), pages 861-88, July.
  5. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00638440, HAL.
  6. Fair, Ray C & Shiller, Robert J, 1990. "Comparing Information in Forecasts from Econometric Models," American Economic Review, American Economic Association, vol. 80(3), pages 375-89, June.
  7. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
  8. Francis X. Diebold & Lutz Kilian, 1999. "Unit Root Tests Are Useful for Selecting Forecasting Models," NBER Working Papers 6928, National Bureau of Economic Research, Inc.
  9. A. Espasa & E. Senra & R. Albacete, 2002. "Forecasting inflation in the European Monetary Union: A disaggregated approach by countries and by sectors," The European Journal of Finance, Taylor & Francis Journals, vol. 8(4), pages 402-421.
  10. Elliott, Graham & Timmermann, Allan G, 2007. "Economic Forecasting," CEPR Discussion Papers 6158, C.E.P.R. Discussion Papers.
  11. van Garderen, Kees Jan & Lee, Kevin & Pesaran, M. Hashem, 2000. "Cross-sectional aggregation of non-linear models," Journal of Econometrics, Elsevier, vol. 95(2), pages 285-331, April.
  12. Diebold, Francis X & Kilian, Lutz, 2000. "Measuring Predictability: Theory And Macroeconomic Applications," CEPR Discussion Papers 2424, C.E.P.R. Discussion Papers.
  13. Clements, Michael P. & Hendry, David F., 2006. "Forecasting with Breaks," Handbook of Economic Forecasting, Elsevier.
  14. David F. Hendry, 2004. "Unpredictability and the Foundations of Economic Forecasting," Econometric Society 2004 Australasian Meetings 27, Econometric Society.
  15. Mario Forni & Marc Hallin & Lucrezia Reichlin & Marco Lippi, 2000. "The generalised dynamic factor model: identification and estimation," ULB Institutional Repository 2013/10143, ULB -- Universite Libre de Bruxelles.
  16. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-44, January.
  17. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2005. "The generalised dynamic factor model: one sided estimation and forecasting," ULB Institutional Repository 2013/10129, ULB -- Universite Libre de Bruxelles.
  18. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
  19. Kohn, Robert, 1982. "When is an aggregate of a time series efficiently forecast by its past?," Journal of Econometrics, Elsevier, vol. 18(3), pages 337-349, April.
  20. Guillaume Chevillon, 2007. "Direct Multi-Step Estimation And Forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 21(4), pages 746-785, 09.
  21. Thomas J. Sargent & Christopher A. Sims, 1977. "Business cycle modeling without pretending to have too much a priori economic theory," Working Papers 55, Federal Reserve Bank of Minneapolis.
  22. Kirstin Hubrich, 2004. "Forecasting euro area inflation: Does aggregating forecasts by HICP component improve forecast accuracy?," Computing in Economics and Finance 2004 230, Society for Computational Economics.
  23. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
  24. Makridakis, Spyros & Hibon, Michele, 2000. "The M3-Competition: results, conclusions and implications," International Journal of Forecasting, Elsevier, vol. 16(4), pages 451-476.
  25. Clements,Michael & Hendry,David, 1998. "Forecasting Economic Time Series," Cambridge Books, Cambridge University Press, number 9780521632423.
  26. Clive W. J. Granger, 1988. "Aggregation of time series variables-a survey," Discussion Paper / Institute for Empirical Macroeconomics 1, Federal Reserve Bank of Minneapolis.
  27. David Hendry & Michael Clements, 2001. "Pooling of Forecasts," Economics Series Working Papers 2002-W09, University of Oxford, Department of Economics.
  28. Marcellino, Massimiliano & Stock, James H & Watson, Mark W, 2005. "A Comparison of Direct and Iterated Multistep AR Methods for Forecasting Macroeconomic Time Series," CEPR Discussion Papers 4976, C.E.P.R. Discussion Papers.
  29. Clements, Michael P & Hendry, David F, 1996. "Multi-step Estimation for Forecasting," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 58(4), pages 657-84, November.
  30. Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Boston College Working Papers in Economics 440, Boston College Department of Economics.
  31. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-62, April.
  32. Lutkepohl, Helmut, 1984. "Forecasting Contemporaneously Aggregated Vector ARMA Processes," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(3), pages 201-14, July.
  33. Michael P. Clements & David F. Hendry, 2001. "Forecasting Non-Stationary Economic Time Series," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262531895, June.
  34. Todd E. Clark, 1996. "Finite-sample properties of tests for forecast equivalence," Research Working Paper 96-03, Federal Reserve Bank of Kansas City.
  35. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
  36. Benalal, Nicholai & Diaz del Hoyo, Juan Luis & Landau, Bettina & Roma, Moreno & Skudelny, Frauke, 2004. "To aggregate or not to aggregate? Euro area inflation forecasting," Working Paper Series 0374, European Central Bank.
  37. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cpr:ceprdp:5485. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

The email address of this maintainer does not seem to be valid anymore. Please ask to update the entry or send us the correct address

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.