IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Unit Root Tests are Useful for Selecting Forecasting Models

  • Francis X. Diebold
  • Lutz Kilian

We study the usefulness of unit root tests as diagnostic tools for selecting forecasting models. Difference stationary and trend stationary models of economic and financial time series often imply very different predictions, so deciding which model to use is tremendously important for applied forecasters. We consider three strategies: always difference the data, never difference, or use a unit-root pretest. We characterize the predictive loss of these strategies for the canonical AR(1) process with trend, focusing on the effects of sample size, forecast horizon, and degree of persistence. We show that pretesting routinely improves forecast accuracy relative to forecasts from models in differences, and we give conditions under which pretesting is likely to improve forecast accuracy relative to forecasts from models in levels.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.stern.nyu.edu/fin/workpapers/papers99/wpa99063.pdf
Download Restriction: no

Paper provided by New York University, Leonard N. Stern School of Business- in its series New York University, Leonard N. Stern School Finance Department Working Paper Seires with number 99-063.

as
in new window

Length:
Date of creation: 18 Jan 1999
Date of revision:
Handle: RePEc:fth:nystfi:99-063
Contact details of provider: Postal:
U.S.A.; New York University, Leonard N. Stern School of Business, Department of Economics . 44 West 4th Street. New York, New York 10012-1126

Phone: (212) 998-0100
Web page: http://w4.stern.nyu.edu/finance/

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Christiano, Lawrence J. & Eichenbaum, Martin, 1990. "Unit roots in real GNP: Do we know, and do we care?," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 32(1), pages 7-61, January.
  2. Elliott, Graham & Rothenberg, Thomas J & Stock, James H, 1996. "Efficient Tests for an Autoregressive Unit Root," Econometrica, Econometric Society, vol. 64(4), pages 813-36, July.
  3. Eugene Canjels & Mark W. Watson, 1994. "Estimating Deterministic Trends in the Presence of Serially Correlated Errors," NBER Technical Working Papers 0165, National Bureau of Economic Research, Inc.
  4. Zivot, Eric & Andrews, Donald W K, 1992. "Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(3), pages 251-70, July.
  5. Denis Kwiatkowski & Peter C.B. Phillips & Peter Schmidt, 1991. "Testing the Null Hypothesis of Stationarity Against the Alternative of a Unit Root: How Sure Are We That Economic Time Series Have a Unit Root?," Cowles Foundation Discussion Papers 979, Cowles Foundation for Research in Economics, Yale University.
  6. Andrews, Donald W K & Chen, Hong-Yuan, 1994. "Approximately Median-Unbiased Estimation of Autoregressive Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(2), pages 187-204, April.
  7. Ng, S. & Perron, P., 1994. "Unit Root Tests ARMA Models with Data Dependent Methods for the Selection of the Truncation Lag," Cahiers de recherche 9423, Centre interuniversitaire de recherche en ├ęconomie quantitative, CIREQ.
  8. Glenn D. Rudebusch, 1992. "The uncertain unit root in real GNP," Finance and Economics Discussion Series 193, Board of Governors of the Federal Reserve System (U.S.).
  9. John Y. Campbell & Pierre Perron, 1991. "Pitfalls and Opportunities: What Macroeconomists Should Know About Unit Roots," NBER Chapters, in: NBER Macroeconomics Annual 1991, Volume 6, pages 141-220 National Bureau of Economic Research, Inc.
  10. Diebold, Francis X & Senhadji, Abdelhak S, 1996. "The Uncertain Unit Root in Real GNP: Comment," American Economic Review, American Economic Association, vol. 86(5), pages 1291-98, December.
  11. Leybourne, S J & McCabe, B P M, 1994. "A Consistent Test for a Unit Root," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(2), pages 157-66, April.
  12. Stock, James H, 1996. "VAR, Error Correction and Pretest Forecasts at Long Horizons," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 58(4), pages 685-701, November.
  13. Lutz Kilian, 1998. "Small-Sample Confidence Intervals For Impulse Response Functions," The Review of Economics and Statistics, MIT Press, vol. 80(2), pages 218-230, May.
  14. Peter C.B. Phillips & Werner Ploberger, 1992. "Posterior Odds Testing for a Unit Root with Data-Based Model Selection," Cowles Foundation Discussion Papers 1017, Cowles Foundation for Research in Economics, Yale University.
  15. Christoffersen, Peter F & Diebold, Francis X, 1998. "Cointegration and Long-Horizon Forecasting," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(4), pages 450-58, October.
  16. Caner, Mehmet & Kilian, Lutz, 1999. "Size distortions of tests of the null hypothesis of stationarity: Evidence and implications for applied work," ZEI Working Papers B 12-1999, University of Bonn, ZEI - Center for European Integration Studies.
  17. Franses, Philip Hans & Kleibergen, Frank, 1996. "Unit roots in the Nelson-Plosser data: Do they matter for forecasting?," International Journal of Forecasting, Elsevier, vol. 12(2), pages 283-288, June.
  18. Michael P. Clements & David F. Hendry, 1999. "On winning forecasting competitions in economics," Spanish Economic Review, Springer;Spanish Economic Association, vol. 1(2), pages 123-160.
  19. James H. Stock & Mark W. Watson, 1998. "A Comparison of Linear and Nonlinear Univariate Models for Forecasting Macroeconomic Time Series," NBER Working Papers 6607, National Bureau of Economic Research, Inc.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:fth:nystfi:99-063. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Thomas Krichel)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.