IDEAS home Printed from https://ideas.repec.org/a/ecm/emetrp/v64y1996i4p813-36.html
   My bibliography  Save this article

Efficient Tests for an Autoregressive Unit Root

Author

Listed:
  • Elliott, Graham
  • Rothenberg, Thomas J
  • Stock, James H

Abstract

The asymptotic power envelope is derived for point-optimal tests of a unit root in the autoregressive representation of a Gaussian time series. The authors propose a family of tests whose asymptotic power functions are tangent to the power envelope at one point and are never far below. When the series has an unknown mean or linear trend, commonly used tests are found to be dominated by members of the family of point-optimal invariant tests. The authors propose a modified version of the Dickey-Fuller t test which has desirable size properties and substantially improved power when an unknown mean or trend is present. Copyright 1996 by The Econometric Society.

Suggested Citation

  • Elliott, Graham & Rothenberg, Thomas J & Stock, James H, 1996. "Efficient Tests for an Autoregressive Unit Root," Econometrica, Econometric Society, vol. 64(4), pages 813-836, July.
  • Handle: RePEc:ecm:emetrp:v:64:y:1996:i:4:p:813-36
    as

    Download full text from publisher

    File URL: http://links.jstor.org/sici?sici=0012-9682%28199607%2964%3A4%3C813%3AETFAAU%3E2.0.CO%3B2-8&origin=repec
    File Function: full text
    Download Restriction: Access to full text is restricted to JSTOR subscribers. See http://www.jstor.org for details.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Sargan, John Denis & Bhargava, Alok, 1983. "Testing Residuals from Least Squares Regression for Being Generated by the Gaussian Random Walk," Econometrica, Econometric Society, vol. 51(1), pages 153-174, January.
    2. Schwert, G William, 2002. "Tests for Unit Roots: A Monte Carlo Investigation," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 5-17, January.
    3. Peter C.B. Phillips & Peter Schmidt, 1989. "Testing for a Unit Root in the Presence of Deterministic Trends," Cowles Foundation Discussion Papers 933, Cowles Foundation for Research in Economics, Yale University.
    4. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    5. DeJong, David N. & Nankervis, John C. & Savin, N. E. & Whiteman, Charles H., 1992. "The power problems of unit root test in time series with autoregressive errors," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 323-343.
    6. Dufour, Jean-Marie & King, Maxwell L., 1991. "Optimal invariant tests for the autocorrelation coefficient in linear regressions with stationary or nonstationary AR(1) errors," Journal of Econometrics, Elsevier, vol. 47(1), pages 115-143, January.
    7. Baillie, Richard T & Bollerslev, Tim, 2002. "The Message in Daily Exchange Rates: A Conditional-Variance Tale," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 60-68, January.
    8. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    9. Evans, G B A & Savin, N E, 1981. "Testing for Unit Roots: 1," Econometrica, Econometric Society, vol. 49(3), pages 753-779, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John Y. Campbell & Pierre Perron, 1991. "Pitfalls and Opportunities: What Macroeconomists Should Know About Unit Roots," NBER Chapters, in: NBER Macroeconomics Annual 1991, Volume 6, pages 141-220, National Bureau of Economic Research, Inc.
    2. Philip A. Shively, 2001. "Trend-stationary GNP: evidence from a new exact pointwise most powerful invariant unit root test," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(4), pages 537-551.
    3. Giovanni Forchini & Patrick Marsh, "undated". "Exact Inference for the Unit Root Hypothesis," Discussion Papers 00/54, Department of Economics, University of York.
    4. Changli He & Rickard Sandberg, 2006. "Dickey–Fuller Type of Tests against Nonlinear Dynamic Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 68(s1), pages 835-861, December.
    5. Paparoditis, Efstathios & Politis, Dimitris N, 2001. "Unit Root Testing via the Continuous-Path Block Bootstrap," University of California at San Diego, Economics Working Paper Series qt9qb4r775, Department of Economics, UC San Diego.
    6. Pierre St-Amant, 1996. "Decomposing U.S. Nominal Interest Rates into Expected Inflation and Ex Ante Real Interest rates Using Structural VAR Methodology," Staff Working Papers 96-2, Bank of Canada.
    7. Zhije Xiao & Peter C.B. Phillips, 1998. "An ADF coefficient test for a unit root in ARMA models of unknown order with empirical applications to the US economy," Econometrics Journal, Royal Economic Society, vol. 1(RegularPa), pages 27-43.
    8. Phillips, P C B, 1991. "Bayesian Routes and Unit Roots: De Rebus Prioribus Semper Est Disputandum," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 6(4), pages 435-473, Oct.-Dec..
    9. Serena Ng & Pierre Perron, 2001. "LAG Length Selection and the Construction of Unit Root Tests with Good Size and Power," Econometrica, Econometric Society, vol. 69(6), pages 1519-1554, November.
    10. Niels Haldrup & Robinson Kruse & Timo Teräsvirta & Rasmus T. Varneskov, 2013. "Unit roots, non-linearities and structural breaks," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 4, pages 61-94, Edward Elgar Publishing.
    11. Sanchez, Ismael, 1998. "Testing for Unit Roots with Prediction Errors," University of California at San Diego, Economics Working Paper Series qt8pc6n1j8, Department of Economics, UC San Diego.
    12. María del Mar Sánchez de la Vega & Arielle Beyaert, 1994. "Los contrastes de raiz unitaria: una panorámica," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 1, pages 109-154, Junio.
    13. Bierens, Herman J., 1997. "Testing the unit root with drift hypothesis against nonlinear trend stationarity, with an application to the US price level and interest rate," Journal of Econometrics, Elsevier, vol. 81(1), pages 29-64, November.
    14. Jürgen Wolters & Uwe Hassler, 2006. "Unit root testing," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 90(1), pages 43-58, March.
    15. Jiti Gao & Maxwell King, 2011. "A New Test in Parametric Linear Models against Nonparametric Autoregressive Errors," Monash Econometrics and Business Statistics Working Papers 20/11, Monash University, Department of Econometrics and Business Statistics.
    16. Peter C. B. Phillips & Zhijie Xiao, 1998. "A Primer on Unit Root Testing," Journal of Economic Surveys, Wiley Blackwell, vol. 12(5), pages 423-470, December.
    17. Gabriel Rodriguez & Pierre Perron, 2013. "Single-equation tests for Cointegration with GLS Detrended Data," Boston University - Department of Economics - Working Papers Series 2013-016, Boston University - Department of Economics.
    18. Surajit Deb, 2003. "Terms of Trade and Supply Response of Indian Agriculture: Analysis in Cointegration Framework," Working papers 115, Centre for Development Economics, Delhi School of Economics.
    19. Eric Zivot & Peter C.B. Phillips, 1991. "A Bayesian Analysis of Trend Determination in Economic Time Series," Cowles Foundation Discussion Papers 1002, Cowles Foundation for Research in Economics, Yale University.
    20. Distaso, Walter, 2008. "Testing for unit root processes in random coefficient autoregressive models," Journal of Econometrics, Elsevier, vol. 142(1), pages 581-609, January.

    More about this item

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Lists

    This item is featured on the following reading lists, Wikipedia, or ReplicationWiki pages:
    1. ADF-GLS test in Wikipedia English

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:emetrp:v:64:y:1996:i:4:p:813-36. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley Content Delivery). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.