IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

On the Long-Run Variance Ratio Test for a Unit Root

  • Ye Cai


    (Graduate Student, Department of Economics, Vanderbilt University)

  • Mototsugu Shintani


    (Department of Economics, Vanderbilt University)

This paper investigates the effects of consistent and inconsistent long-run variance estimation on a unit root test based on the generalization of the von Neumann ratio. The results from the Monte Carlo experiments suggest that the tests based on an inconsistent estimator have less size distortion and more stability of size across different autocorrelation specifications as compared to the tests based on a consistent estimator. This improvement in size property, however, comes at the cost of a loss in power. The finite sample power, as well as the local asymptotic power, of the tests with an inconsistent estimator is shown to be much lower than that of conventional tests. This finding resembles the case of the autocorrelation robust test in the standard regression context. The paper also points out that combining consistent and inconsistent estimators in the long-run variance ratio test for a unit root is one possibility of balancing the size and power.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: First version, 2005
Download Restriction: no

Paper provided by Vanderbilt University Department of Economics in its series Vanderbilt University Department of Economics Working Papers with number 0506.

in new window

Date of creation: Mar 2005
Date of revision:
Handle: RePEc:van:wpaper:0506
Contact details of provider: Web page:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:van:wpaper:0506. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (John P. Conley)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.