IDEAS home Printed from https://ideas.repec.org/a/bes/jnlbes/v18y2000i3p265-73.html
   My bibliography  Save this article

Unit-Root Tests Are Useful for Selecting Forecasting Models

Author

Listed:
  • Diebold, Francis X
  • Kilian, Lutz

Abstract

We study the usefulness of unit-root tests as diagnostic tools for selecting forecasting models. Difference-stationary and trend-stationary models of economic and financial time series often imply very different predictions, so deciding which model to use is tremendously important for applied forecasters. We consider three strategies: always difference the data, never difference, or use a unit-root pretest. We characterize the predictive loss of these strategies for the canonical AR(1) process with trend, focusing on the effects of sample size, forecast horizon, and degree of persistence. We show that pretesting routinely improves forecast accuracy relative to forecasts from models in differences, and we give conditions under which pretesting is likely to improve forecast accuracy relative to forecasts from models in levels.

Suggested Citation

  • Diebold, Francis X & Kilian, Lutz, 2000. "Unit-Root Tests Are Useful for Selecting Forecasting Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 265-273, July.
  • Handle: RePEc:bes:jnlbes:v:18:y:2000:i:3:p:265-73
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Christiano, Lawrence J. & Eichenbaum, Martin, 1990. "Unit roots in real GNP: Do we know, and do we care?," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 32(1), pages 7-61, January.
    2. Rudebusch, Glenn D, 1993. "The Uncertain Unit Root in Real GNP," American Economic Review, American Economic Association, vol. 83(1), pages 264-272, March.
    3. Phillips, Peter C.B. & Ploberger, Werner, 1994. "Posterior Odds Testing for a Unit Root with Data-Based Model Selection," Econometric Theory, Cambridge University Press, vol. 10(3-4), pages 774-808, August.
    4. Ng, S. & Perron, P., 1994. "Unit Root Tests ARMA Models with Data Dependent Methods for the Selection of the Truncation Lag," Cahiers de recherche 9423, Universite de Montreal, Departement de sciences economiques.
    5. John Y. Campbell & Pierre Perron, 1991. "Pitfalls and Opportunities: What Macroeconomists Should Know About Unit Roots," NBER Chapters,in: NBER Macroeconomics Annual 1991, Volume 6, pages 141-220 National Bureau of Economic Research, Inc.
    6. Michael P. Clements & David F. Hendry, 1999. "On winning forecasting competitions in economics," Spanish Economic Review, Springer;Spanish Economic Association, vol. 1(2), pages 123-160.
    7. Eugene Canjels & Mark W. Watson, 1997. "Estimating Deterministic Trends In The Presence Of Serially Correlated Errors," The Review of Economics and Statistics, MIT Press, vol. 79(2), pages 184-200, May.
    8. Perron, Pierre & Rodriguez, Gabriel, 2003. "GLS detrending, efficient unit root tests and structural change," Journal of Econometrics, Elsevier, vol. 115(1), pages 1-27, July.
    9. Franses, Philip Hans & Kleibergen, Frank, 1996. "Unit roots in the Nelson-Plosser data: Do they matter for forecasting?," International Journal of Forecasting, Elsevier, vol. 12(2), pages 283-288, June.
    10. Mehmet Caner & Lutz Kilian, 1999. "Size Distortions of Tests of the Null Hypothesis of Stationarity: Evidence and Implications for Applied Work," Computing in Economics and Finance 1999 511, Society for Computational Economics.
    11. Andrews, Donald W K & Chen, Hong-Yuan, 1994. "Approximately Median-Unbiased Estimation of Autoregressive Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(2), pages 187-204, April.
    12. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    13. Stock, James H, 1996. "VAR, Error Correction and Pretest Forecasts at Long Horizons," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 58(4), pages 685-701, November.
    14. Lutz Kilian, 1998. "Small-Sample Confidence Intervals For Impulse Response Functions," The Review of Economics and Statistics, MIT Press, vol. 80(2), pages 218-230, May.
    15. Zivot, Eric & Andrews, Donald W K, 2002. "Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 25-44, January.
    16. Christoffersen, Peter F & Diebold, Francis X, 1998. "Cointegration and Long-Horizon Forecasting," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(4), pages 450-458, October.
    17. Perron, Pierre & Rodriguez, Gabriel, 2003. "GLS detrending, efficient unit root tests and structural change," Journal of Econometrics, Elsevier, vol. 115(1), pages 1-27, July.
    18. Leybourne, S J & McCabe, B P M, 1994. "A Consistent Test for a Unit Root," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(2), pages 157-166, April.
    19. Diebold, Francis X & Senhadji, Abdelhak S, 1996. "The Uncertain Unit Root in Real GNP: Comment," American Economic Review, American Economic Association, vol. 86(5), pages 1291-1298, December.
    20. James H. Stock & Mark W. Watson, 1998. "A Comparison of Linear and Nonlinear Univariate Models for Forecasting Macroeconomic Time Series," NBER Working Papers 6607, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlbes:v:18:y:2000:i:3:p:265-73. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: http://www.amstat.org/publications/jbes/index.cfm?fuseaction=main .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.