IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Inferential Theory for Factor Models of Large Dimensions

Listed author(s):
  • Jushan Bai


    (New York University, U.S.A.)

This paper develops an inferential theory for factor models of large dimensions. The principal components estimator is considered because it is easy to compute and is asymptotically equivalent to the maximum likelihood estimator (if normality is assumed). We derive the rate of convergence and the limiting distributions of the estimated factors, factor loadings, and common components. The theory is developed within the framework of large cross sections ("N") and a large time dimension ("T"), to which classical factor analysis does not apply.We show that the estimated common components are asymptotically normal with a convergence rate equal to the minimum of the square roots of "N" and "T". The estimated factors and their loadings are generally normal, although not always so. The convergence rate of the estimated factors and factor loadings can be faster than that of the estimated common components. These results are obtained under general conditions that allow for correlations and heteroskedasticities in both dimensions. Stronger results are obtained when the idiosyncratic errors are serially uncorrelated and homoskedastic. A necessary and sufficient condition for consistency is derived for large "N" but fixed "T". Copyright The Econometric Society 2003.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: link to full text
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Econometric Society in its journal Econometrica.

Volume (Year): 71 (2003)
Issue (Month): 1 (January)
Pages: 135-171

in new window

Handle: RePEc:ecm:emetrp:v:71:y:2003:i:1:p:135-171
Contact details of provider: Phone: 1 212 998 3820
Fax: 1 212 995 4487
Web page:

More information through EDIRC

Order Information: Web: Email:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ecm:emetrp:v:71:y:2003:i:1:p:135-171. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing)

or (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.