IDEAS home Printed from https://ideas.repec.org/a/bla/ecorec/v87y2011i276p76-89.html
   My bibliography  Save this article

Seven Leading Indexes of New Zealand Employment

Author

Listed:
  • EDDA CLAUS

Abstract

This article constructs seven leading indexes of New Zealand employment and assesses their relative usefulness in terms of forecasting quarterly employment growth. Leading indexes have been widely used since their introduction in the late 1930s. One construction method dominated until academic research interest into alternative techniques re-appeared in the late 1980s. What has been missing so far in the literature is a thorough comparison of old and new techniques in terms of forecasting performance. This article is a step in that direction. The methods covered here reflect varying degrees of technical sophistication, ranging from simple scoring of changes to relying on frequency domain methods to extract dynamic latent factors from a large dataset. The results show that no single index dominates in terms of forecasting employment growth one to four quarters ahead. This suggests that relying on a suite of models may be the optimal forecasting strategy.

Suggested Citation

  • Edda Claus, 2011. "Seven Leading Indexes of New Zealand Employment," The Economic Record, The Economic Society of Australia, vol. 87(276), pages 76-89, March.
  • Handle: RePEc:bla:ecorec:v:87:y:2011:i:276:p:76-89
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1475-4932.2010.00681.x
    Download Restriction: no

    References listed on IDEAS

    as
    1. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
    2. Wesley Clair Mitchell & Arthur F. Burns, 1938. "Statistical Indicators of Cyclical Revivals," NBER Books, National Bureau of Economic Research, Inc, number mitc38-1.
    3. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2003. "Do financial variables help forecasting inflation and real activity in the euro area?," Journal of Monetary Economics, Elsevier, vol. 50(6), pages 1243-1255, September.
    4. Forni, Mario & Lippi, Marco, 2001. "The Generalized Dynamic Factor Model: Representation Theory," Econometric Theory, Cambridge University Press, vol. 17(06), pages 1113-1141, December.
    5. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    6. Chevillon, Guillaume & Hendry, David F., 2005. "Non-parametric direct multi-step estimation for forecasting economic processes," International Journal of Forecasting, Elsevier, vol. 21(2), pages 201-218.
    7. Henriksson, Roy D & Merton, Robert C, 1981. "On Market Timing and Investment Performance. II. Statistical Procedures for Evaluating Forecasting Skills," The Journal of Business, University of Chicago Press, vol. 54(4), pages 513-533, October.
    8. Christian Schumacher, 2007. "Forecasting German GDP using alternative factor models based on large datasets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(4), pages 271-302.
    9. Holmes, Richard A. & Shamsuddin, Abul F. M., 1993. "Evaluation of alternative leading indicators of British Columbia industrial employment," International Journal of Forecasting, Elsevier, vol. 9(1), pages 77-83, April.
    10. Masahiro Ashiya, 2006. "Are 16-month-ahead forecasts useful? A directional analysis of Japanese GDP forecasts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(3), pages 201-207.
    11. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
    12. Harding, Don & Pagan, Adrian, 2002. "Dissecting the cycle: a methodological investigation," Journal of Monetary Economics, Elsevier, vol. 49(2), pages 365-381, March.
    13. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
    14. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2006. "A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 499-526.
    15. Pesaran, M Hashem & Timmermann, Allan, 1992. "A Simple Nonparametric Test of Predictive Performance," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 561-565, October.
    16. Pami Dua & Anirvan Banerji & Stephen M. Miller, 2006. "Performance evaluation of the New Connecticut Leading Employment Index using lead profiles and BVAR models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(6), pages 415-437.
    17. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
    18. Graham Elliott & Allan Timmermann, 2016. "Economic Forecasting," Economics Books, Princeton University Press, edition 1, number 10740.
    19. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 33(1), pages 125-132.
    20. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    21. Abberger, Klaus, 2007. "Qualitative business surveys and the assessment of employment -- A case study for Germany," International Journal of Forecasting, Elsevier, vol. 23(2), pages 249-258.
    22. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    23. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    24. Pesaran, M. Hashem & Timmermann, Allan, 2007. "Selection of estimation window in the presence of breaks," Journal of Econometrics, Elsevier, vol. 137(1), pages 134-161, March.
    25. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
    26. Carriero, Andrea & Marcellino, Massimiliano, 2007. "A comparison of methods for the construction of composite coincident and leading indexes for the UK," International Journal of Forecasting, Elsevier, vol. 23(2), pages 219-236.
    27. David E. Rapach & Jack K. Strauss, 2008. "Forecasting US employment growth using forecast combining methods," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(1), pages 75-93.
    28. Holmes, R. A., 1986. "Leading indicators of industrial employment in British Columbia," International Journal of Forecasting, Elsevier, vol. 2(1), pages 87-100.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:taf:nzecpp:v:50:y:2016:i:3:p:261-280 is not listed on IDEAS
    2. Viv B. Hall & C. John McDermott, 2016. "Recessions and recoveries in New Zealand's post-Second World War business cycles," New Zealand Economic Papers, Taylor & Francis Journals, vol. 50(3), pages 261-280, September.
    3. Edda Claus & Iris Claus, 2007. "Six Leading Indexes Of New Zealand Employment," CAMA Working Papers 2007-17, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    4. Hall, Viv B. & McDermott, C. John, 2015. "Recessions and Recoveries in New Zealand’s Post-Second World War Business Cycles," Working Paper Series 4688, Victoria University of Wellington, School of Economics and Finance.
    5. Edda Claus & Chew Lian Chua & G. C. Lim, 2011. "Regional Indexes of Activity: Combining the Old with the New," Melbourne Institute Working Paper Series wp2011n15, Melbourne Institute of Applied Economic and Social Research, The University of Melbourne.

    More about this item

    Keywords

    C53 ; J21 ;

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • J21 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Labor Force and Employment, Size, and Structure

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:ecorec:v:87:y:2011:i:276:p:76-89. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/esausea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.