IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Forecasting Aggregate Retail Sales: The Case of South Africa

  • Goodness C. Aye

    ()

    (Department of Economics, University of Pretoria)

  • Mehmet Balcilar

    ()

    (Department of Economics, Eastern Mediterranean University, Famagusta, North Cyprus,via Mersin 10, Turkey)

  • Rangan Gupta

    ()

    (Department of Economics, University of Pretoria)

  • Anandamayee Majumdar

    ()

    (Soochow University Center for Advance Statistics and Econometric Research, Suzhou, China.)

Forecasting aggregate retail sales may improve portfolio investors’ ability to predict movements in the stock prices of the retailing chains. Therefore, this paper uses 26 (23 single and 3 combination) forecasting models to forecast South Africa’s aggregate seasonal retail sales. We use data from 1970:01–2012:05, with 1987:01-2012:05 as the out-of-sample period. We deviate from the uniform symmetric quadratic loss function typically used in forecast evaluation exercises. Hence, we consider loss functions that overweight forecast error in booms and recessions to check whether a specific model that appears to be a good choice on average is also preferable in times of economic stress. To this end, we use the weighted RMSE and weighted version of the Diebold-Mariano tests to evaluate the different forecasts. Focussing on the single models alone, results show that their performances differ greatly across forecast horizons and for different weighting schemes. However, the combination forecasts models in general produced better forecasts and are largely unaffected by business cycles and time horizons.

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below under "Related research" whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.

Paper provided by University of Pretoria, Department of Economics in its series Working Papers with number 201312.

as
in new window

Length: 24 pages
Date of creation: Feb 2013
Date of revision:
Handle: RePEc:pre:wpaper:201312
Contact details of provider: Postal: PRETORIA, 0002
Phone: (+2712) 420 2413
Fax: (+2712) 362-5207
Web page: http://www.up.ac.za/economics

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Karl E. Case, John M. Quigley, Robert J. Shiller., 2001. "Comparing Wealth Effects: The Stock Market versus The Housing Market," Economics Working Papers E01-308, University of California at Berkeley.
  2. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
  3. Thomas A. Garrett & Rubén Hernández-Murillo & Michael T. Owyang, 2005. "Does consumer sentiment predict regional consumption?," Review, Federal Reserve Bank of St. Louis, issue Mar, pages 123-135.
  4. Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-63, July.
  5. Chu, Ching-Wu & Zhang, Guoqiang Peter, 2003. "A comparative study of linear and nonlinear models for aggregate retail sales forecasting," International Journal of Production Economics, Elsevier, vol. 86(3), pages 217-231, December.
  6. Harvey, Andrew, 2006. "Forecasting with Unobserved Components Time Series Models," Handbook of Economic Forecasting, Elsevier.
  7. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
  8. Dick Dijk & Philip Hans Franses, 2003. "Selecting a Nonlinear Time Series Model using Weighted Tests of Equal Forecast Accuracy," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(s1), pages 727-744, December.
  9. Karl E. Case & John M. Quigley & Robert J. Shiller, 2013. "Wealth Effects Revisited: 1975-2012," NBER Working Papers 18667, National Bureau of Economic Research, Inc.
  10. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2003. "Do financial variables help forecasting inflation and real activity in the euro area?," Journal of Monetary Economics, Elsevier, vol. 50(6), pages 1243-1255, September.
  11. Au, Kin-Fan & Choi, Tsan-Ming & Yu, Yong, 2008. "Fashion retail forecasting by evolutionary neural networks," International Journal of Production Economics, Elsevier, vol. 114(2), pages 615-630, August.
  12. Makridakis, Spyros, 1989. "Why combining works?," International Journal of Forecasting, Elsevier, vol. 5(4), pages 601-603.
  13. Chanont Banternghansa & Michael W. McCracken, 2010. "Real-time forecast averaging with ALFRED," Working Papers 2010-033, Federal Reserve Bank of St. Louis.
  14. Xiao, Tiaojun & Qi, Xiangtong, 2008. "Price competition, cost and demand disruptions and coordination of a supply chain with one manufacturer and two competing retailers," Omega, Elsevier, vol. 36(5), pages 741-753, October.
  15. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 1999. "The Generalized Dynamic Factor Model: Identification and Estimation," CEPR Discussion Papers 2338, C.E.P.R. Discussion Papers.
  16. Zhou Xia & Carroll Christopher D., 2012. "Dynamics of Wealth and Consumption: New and Improved Measures for U.S. States," The B.E. Journal of Macroeconomics, De Gruyter, vol. 12(2), pages 1-44, March.
  17. Spyros Makridakis & Robert L. Winkler, 1983. "Averages of Forecasts: Some Empirical Results," Management Science, INFORMS, vol. 29(9), pages 987-996, September.
  18. Kapetanios, George & Labhard, Vincent & Price, Simon, 2008. "Forecast combination and the Bank of England's suite of statistical forecasting models," Economic Modelling, Elsevier, vol. 25(4), pages 772-792, July.
  19. Hyndman, Rob J. & Koehler, Anne B. & Snyder, Ralph D. & Grose, Simone, 2002. "A state space framework for automatic forecasting using exponential smoothing methods," International Journal of Forecasting, Elsevier, vol. 18(3), pages 439-454.
  20. Chatfield, Chris, 1992. "A commentary on error measures," International Journal of Forecasting, Elsevier, vol. 8(1), pages 100-102, June.
  21. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
  22. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
  23. Barksdale, Hiram C & Hilliard, Jimmy E, 1975. "A Cross-spectral Analysis of Retail Inventories and Sales," The Journal of Business, University of Chicago Press, vol. 48(3), pages 365-82, July.
  24. Francisco Craveiro Dias & Maximiano Pinheiro & António Rua, 2008. "Forecasting Using Targeted Diffusion Indexes," Working Papers w200807, Banco de Portugal, Economics and Research Department.
  25. Zellner, Arnold, 1986. "A tale of forecasting 1001 series : The Bayesian knight strikes again," International Journal of Forecasting, Elsevier, vol. 2(4), pages 491-494.
  26. Yeung Lewis Chan & James H. Stock & Mark W. Watson, 1999. "A dynamic factor model framework for forecast combination," Spanish Economic Review, Springer, vol. 1(2), pages 91-121.
  27. David Rapach & Jack Strauss, 2010. "Bagging or Combining (or Both)? An Analysis Based on Forecasting U.S. Employment Growth," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 511-533.
  28. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
  29. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-62, April.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pre:wpaper:201312. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Rangan Gupta)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.