IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v29y2010i5-6p511-533.html
   My bibliography  Save this article

Bagging or Combining (or Both)? An Analysis Based on Forecasting U.S. Employment Growth

Author

Listed:
  • David Rapach
  • Jack Strauss

Abstract

Forecasting a macroeconomic variable is challenging in an environment with many potential predictors whose predictive ability can vary over time. We compare two approaches to forecasting U.S. employment growth in this type of environment. The first approach applies bootstrap aggregating (bagging) to a general-to-specific procedure based on a general dynamic linear regression model with 30 potential predictors. The second approach considers several methods for combining forecasts from 30 individual autoregressive distributed lag (ARDL) models, where each individual ARDL model contains a potential predictor. We analyze bagging and combination forecasts at multiple horizons over four different out-of-sample periods using a mean square forecast error (MSFE) criterion and forecast encompassing tests. We find that bagging forecasts often deliver the lowest MSFE. Interestingly, we also find that incorporating information from both bagging and combination forecasts based on principal components often leads to further gains in forecast accuracy.

Suggested Citation

  • David Rapach & Jack Strauss, 2010. "Bagging or Combining (or Both)? An Analysis Based on Forecasting U.S. Employment Growth," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 511-533.
  • Handle: RePEc:taf:emetrv:v:29:y:2010:i:5-6:p:511-533
    DOI: 10.1080/07474938.2010.481550
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/07474938.2010.481550
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    2. Inoue, Atsushi & Kilian, Lutz, 2008. "How Useful Is Bagging in Forecasting Economic Time Series? A Case Study of U.S. Consumer Price Inflation," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 511-522, June.
    3. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    4. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
    5. Yock Y. Chong & David F. Hendry, 1986. "Econometric Evaluation of Linear Macro-Economic Models," Review of Economic Studies, Oxford University Press, vol. 53(4), pages 671-690.
    6. Figlewski, Stephen, 1983. "Optimal Price Forecasting Using Survey Data," The Review of Economics and Statistics, MIT Press, vol. 65(1), pages 13-21, February.
    7. Clements,Michael & Hendry,David, 1998. "Forecasting Economic Time Series," Cambridge Books, Cambridge University Press, number 9780521632423, December.
    8. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
    9. Lee, Tae-Hwy & Yang, Yang, 2006. "Bagging binary and quantile predictors for time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 465-497.
    10. Harvey, David I & Leybourne, Stephen J & Newbold, Paul, 1998. "Tests for Forecast Encompassing," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 254-259, April.
    11. Bai, Jushan & Ng, Serena, 2006. "Evaluating latent and observed factors in macroeconomics and finance," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 507-537.
    12. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 33(1), pages 125-132.
    13. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    14. Yeung Lewis Chan & James H. Stock & Mark W. Watson, 1999. "A dynamic factor model framework for forecast combination," Spanish Economic Review, Springer;Spanish Economic Association, vol. 1(2), pages 91-121.
    15. Aiolfi, Marco & Timmermann, Allan, 2006. "Persistence in forecasting performance and conditional combination strategies," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 31-53.
    16. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
    17. David E. Rapach & Jack K. Strauss, 2008. "Forecasting US employment growth using forecast combining methods," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(1), pages 75-93.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rangan Gupta & Alain Kabundi & Stephen Miller & Josine Uwilingiye, 2014. "Using large data sets to forecast sectoral employment," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(2), pages 229-264, June.
    2. Huiyu Huang & Tae-Hwy Lee, 2013. "Forecasting Value-at-Risk Using High-Frequency Information," Econometrics, MDPI, Open Access Journal, vol. 1(1), pages 1-14, June.
    3. Burcu Gurcihan Yunculer & Gonul Sengul & Arzu Yavuz, 2014. "A Quest for Leading Indicators of the Turkish Unemployment Rate," Central Bank Review, Research and Monetary Policy Department, Central Bank of the Republic of Turkey, vol. 14(1), pages 23-45.
    4. Strauss, Jack, 2013. "Does housing drive state-level job growth? Building permits and consumer expectations forecast a state’s economic activity," Journal of Urban Economics, Elsevier, vol. 73(1), pages 77-93.
    5. Aye, Goodness C. & Balcilar, Mehmet & Gupta, Rangan & Majumdar, Anandamayee, 2015. "Forecasting aggregate retail sales: The case of South Africa," International Journal of Production Economics, Elsevier, vol. 160(C), pages 66-79.
    6. Karol Szafranek, 2017. "Bagged artificial neural networks in forecasting inflation: An extensive comparison with current modelling frameworks," NBP Working Papers 262, Narodowy Bank Polski, Economic Research Department.
    7. Rangan Gupta & Mampho P. Modise & Josine Uwilingiye, 2016. "Out-of-Sample Equity Premium Predictability in South Africa: Evidence from a Large Number of Predictors," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 52(8), pages 1935-1955, August.
    8. Kopoin, Alexandre & Moran, Kevin & Paré, Jean-Pierre, 2013. "Forecasting regional GDP with factor models: How useful are national and international data?," Economics Letters, Elsevier, vol. 121(2), pages 267-270.
    9. Ribeiro, Pinho J., 2017. "Selecting exchange rate fundamentals by bootstrap," International Journal of Forecasting, Elsevier, vol. 33(4), pages 894-914.
    10. Jordan, Steven J. & Vivian, Andrew & Wohar, Mark E., 2017. "Forecasting market returns: bagging or combining?," International Journal of Forecasting, Elsevier, vol. 33(1), pages 102-120.
    11. Dantas, Tiago Mendes & Cyrino Oliveira, Fernando Luiz, 2018. "Improving time series forecasting: An approach combining bootstrap aggregation, clusters and exponential smoothing," International Journal of Forecasting, Elsevier, vol. 34(4), pages 748-761.
    12. Yang, Ke & Tian, Fengping & Chen, Langnan & Li, Steven, 2017. "Realized volatility forecast of agricultural futures using the HAR models with bagging and combination approaches," International Review of Economics & Finance, Elsevier, vol. 49(C), pages 276-291.
    13. Dbouk, Wassim & Jamali, Ibrahim, 2018. "Predicting daily oil prices: Linear and non-linear models," Research in International Business and Finance, Elsevier, vol. 46(C), pages 149-165.
    14. Jordan, Steven J. & Vivian, Andrew & Wohar, Mark E., 2016. "Can commodity returns forecast Canadian sector stock returns?," International Review of Economics & Finance, Elsevier, vol. 41(C), pages 172-188.
    15. repec:eee:jhouse:v:41:y:2018:i:c:p:1-29 is not listed on IDEAS
    16. Rapach, David E. & Strauss, Jack K., 2012. "Forecasting US state-level employment growth: An amalgamation approach," International Journal of Forecasting, Elsevier, vol. 28(2), pages 315-327.
    17. Szafranek, Karol, 2019. "Bagged neural networks for forecasting Polish (low) inflation," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:29:y:2010:i:5-6:p:511-533. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://www.tandfonline.com/LECR20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.