IDEAS home Printed from https://ideas.repec.org/p/ecm/wc2000/1504.html
   My bibliography  Save this paper

Determining the Number of Factors in Approximate Factor Models

Author

Listed:
  • Jushan Bai

    (Boston College)

  • Serena Ng

    (Boston College)

Abstract

In this paper we develop some statistical theory for factor models of large dimensions. The focus is the determination of the number of factors, which is an unresolved issue in the rapidly growing literature on multifactor models. We propose a panel C_p criterion and show that the number of factors can be consistently estimated using the criterion. The theory is developed under the framework of large cross-sections (N) and large time dimensions (T). No restriction is imposed on the relation between N and T. Simulations show that the proposed criterion yields almost precise estimates of the number of factors for configurations of the panel data encountered in practice.

Suggested Citation

  • Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Econometric Society World Congress 2000 Contributed Papers 1504, Econometric Society.
  • Handle: RePEc:ecm:wc2000:1504
    as

    Download full text from publisher

    File URL: http://fmwww.bc.edu/RePEc/es2000/1504.pdf
    File Function: main text
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Cragg, John G. & Donald, Stephen G., 1997. "Inferring the rank of a matrix," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 223-250.
    2. John H. Cochrane, 1999. "New facts in finance," Economic Perspectives, Federal Reserve Bank of Chicago, issue Q III, pages 36-58.
    3. Ross, Stephen A., 1976. "The arbitrage theory of capital asset pricing," Journal of Economic Theory, Elsevier, vol. 13(3), pages 341-360, December.
    4. Forni, Mario & Lippi, Marco, 2001. "The Generalized Dynamic Factor Model: Representation Theory," Econometric Theory, Cambridge University Press, vol. 17(06), pages 1113-1141, December.
    5. Backus, David & Foresi, Silverio & Mozumdar, Abon & Wu, Liuren, 2001. "Predictable changes in yields and forward rates," Journal of Financial Economics, Elsevier, vol. 59(3), pages 281-311, March.
    6. Eric Ghysels & Serena Ng, 1996. "A Semi-Parametric Factor Model for Interest Rates," CIRANO Working Papers 96s-18, CIRANO.
    7. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2000. "Reference Cycles: The NBER Methodology Revisited," CEPR Discussion Papers 2400, C.E.P.R. Discussion Papers.
    8. Geweke, John & Meese, Richard, 1981. "Estimating regression models of finite but unknown order," Journal of Econometrics, Elsevier, vol. 16(1), pages 162-162, May.
    9. Connor, Gregory & Korajczyk, Robert A, 1993. " A Test for the Number of Factors in an Approximate Factor Model," Journal of Finance, American Finance Association, vol. 48(4), pages 1263-1291, September.
    10. Gregory, Allan W & Head, Allen C & Raynauld, Jacques, 1997. "Measuring World Business Cycles," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 38(3), pages 677-701, August.
    11. Schwert, G William, 2002. "Tests for Unit Roots: A Monte Carlo Investigation," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 5-17, January.
    12. Forni, Mario & Lippi, Marco, 1997. "Aggregation and the Microfoundations of Dynamic Macroeconomics," OUP Catalogue, Oxford University Press, number 9780198288008.
    13. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
    14. Dhrymes, Phoebus J & Friend, Irwin & Gultekin, N Bulent, 1984. " A Critical Reexamination of the Empirical Evidence on the Arbitrage Pricing Theory," Journal of Finance, American Finance Association, vol. 39(2), pages 323-346, June.
    15. Stephen G. Donald, 1997. "Inference Concerning the Number of Factors in a Multivariate Nonparametric Relationship," Econometrica, Econometric Society, vol. 65(1), pages 103-132, January.
    16. Thomas J. Sargent & Christopher A. Sims, 1977. "Business cycle modeling without pretending to have too much a priori economic theory," Working Papers 55, Federal Reserve Bank of Minneapolis.
    17. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    18. James H. Stock & Mark W. Watson, 1998. "Diffusion Indexes," NBER Working Papers 6702, National Bureau of Economic Research, Inc.
    19. Gregory, Allan W. & Head, Allen C., 1999. "Common and country-specific fluctuations in productivity, investment, and the current account," Journal of Monetary Economics, Elsevier, vol. 44(3), pages 423-451, December.
    20. Lewbel, Arthur, 1991. "The Rank of Demand Systems: Theory and Nonparametric Estimation," Econometrica, Econometric Society, vol. 59(3), pages 711-730, May.
    21. Lehmann, Bruce N. & Modest, David M., 1988. "The empirical foundations of the arbitrage pricing theory," Journal of Financial Economics, Elsevier, vol. 21(2), pages 213-254, September.
    22. James H. Stock & Mark W. Watson, 1989. "New Indexes of Coincident and Leading Economic Indicators," NBER Chapters,in: NBER Macroeconomics Annual 1989, Volume 4, pages 351-409 National Bureau of Economic Research, Inc.
    23. Mario Forni & Lucrezia Reichlin, 1998. "Let's Get Real: A Factor Analytical Approach to Disaggregated Business Cycle Dynamics," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 453-473.
    24. Gregory Connor and Robert Korajczyk., 1987. "Risk and Return in an Equilibrium APT," Research Program in Finance Working Papers 174, University of California at Berkeley.
    25. Connor, Gregory & Korajczyk, Robert A., 1986. "Performance measurement with the arbitrage pricing theory : A new framework for analysis," Journal of Financial Economics, Elsevier, vol. 15(3), pages 373-394, March.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C43 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Index Numbers and Aggregation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:wc2000:1504. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/essssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.