IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Forecast Combinations

  • Marco Aiolfi
  • Carlos Capistrán
  • Allan Timmermann

We consider combinations of subjective survey forecasts and model-based forecasts from linear and non-linear univariate specifications as well as multivariate factor-augmented models. Empirical results suggest that a simple equal-weighted average of survey forecasts outperform the best model-based forecasts for a majority of macroeconomic variables and forecast horizons. Additional improvements can in some cases be gained by using a simple equal-weighted average of survey and model-based forecasts. We also provide an analysis of the importance of model instability for explaining gains from forecast combination. Analytical and simulation results uncover break scenarios where forecast combinations outperform the best individual forecasting model.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.banxico.org.mx/publicaciones-y-discursos/publicaciones/documentos-de-investigacion/banxico/%7B687AB152-CD27-993D-1FB8-C05468E33C30%7D.pdf
Download Restriction: no

Paper provided by Banco de México in its series Working Papers with number 2010-04.

as
in new window

Length:
Date of creation: Jun 2010
Date of revision:
Handle: RePEc:bdm:wpaper:2010-04
Contact details of provider: Web page: http://www.banxico.org.mx

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Ravi Jagannathan & Tongshu Ma, 2003. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," Journal of Finance, American Finance Association, vol. 58(4), pages 1651-1684, 08.
  2. Valentina Corradi & Andres Fernandez & Norman R. Swanson, 2008. "Information in the revision process of real-time datasets," Working Papers 08-27, Federal Reserve Bank of Philadelphia.
  3. Elliott, Graham & Timmermann, Allan G, 2004. "Optimal Forecast Combination Under Regime Switching," CEPR Discussion Papers 4649, C.E.P.R. Discussion Papers.
  4. Andrew Ang & Geert Bekaert & Min Wei, 2005. "Do Macro Variables, Asset Markets or Surveys Forecast Inflation Better?," NBER Working Papers 11538, National Bureau of Economic Research, Inc.
  5. Diebold, Francis X., 1989. "Forecast combination and encompassing: Reconciling two divergent literatures," International Journal of Forecasting, Elsevier, vol. 5(4), pages 589-592.
  6. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
  7. David F. Hendry & Michael P. Clements, 2004. "Pooling of forecasts," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 1-31, 06.
  8. Clemon, Robert T & Winkler, Robert L, 1986. "Combining Economic Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 39-46, January.
  9. Ghysels, E. & Granger, C.W.J. & Siklos, P.L., 1995. "Is Seasonal Adjustment a Linear or Nonlinear Data Filtring Process," Cahiers de recherche 9517, Universite de Montreal, Departement de sciences economiques.
  10. LeSage, James P & Magura, Michael, 1992. "A Mixture-Model Approach to Combining Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 445-52, October.
  11. Patton, Andrew J & Timmermann, Allan G, 2003. "Properties of Optimal Forecasts," CEPR Discussion Papers 4037, C.E.P.R. Discussion Papers.
  12. Michael Artis & Anindya Banerjee & Massimiliano Marcellino, . "Factor forecasts for the UK," Working Papers 203, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  13. Engle, Robert F. & Granger, C. W. J. & Kraft, Dennis, 1984. "Combining competing forecasts of inflation using a bivariate arch model," Journal of Economic Dynamics and Control, Elsevier, vol. 8(2), pages 151-165, November.
  14. Elliott, Graham & Timmermann, Allan, 2004. "Optimal forecast combinations under general loss functions and forecast error distributions," Journal of Econometrics, Elsevier, vol. 122(1), pages 47-79, September.
  15. Yock Y. Chong & David F. Hendry, 1986. "Econometric Evaluation of Linear Macro-Economic Models," Review of Economic Studies, Oxford University Press, vol. 53(4), pages 671-690.
  16. Ghysels, Eric & Granger, Clive W J & Siklos, Pierre L, 1996. "Is Seasonal Adjustment a Linear or Nonlinear Data-Filtering Process? Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 396-97, July.
  17. Armstrong, J. Scott, 1989. "Combining forecasts: The end of the beginning or the beginning of the end?," International Journal of Forecasting, Elsevier, vol. 5(4), pages 585-588.
  18. Figlewski, Stephen & Urich, Thomas, 1983. " Optimal Aggregation of Money Supply Forecasts: Accuracy, Profitability and Market Efficiency," Journal of Finance, American Finance Association, vol. 38(3), pages 695-710, June.
  19. Carlos Capistrán & Allan Timmermann, 2006. "Forecast Combination with Entry and Exit of Experts," Working Papers 2006-08, Banco de México.
  20. Hylleberg, Svend, 1996. "Is Seasonal Adjustment a Linear or Nonlinear Data-Filtering Process? Comment," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 388-89, July.
  21. Bunn, Derek W., 1985. "Statistical efficiency in the linear combination of forecasts," International Journal of Forecasting, Elsevier, vol. 1(2), pages 151-163.
  22. Jeremy Smith & Kenneth F. Wallis, 2009. "A Simple Explanation of the Forecast Combination Puzzle," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(3), pages 331-355, 06.
  23. Granger, Clive W. J. & Jeon, Yongil, 2004. "Thick modeling," Economic Modelling, Elsevier, vol. 21(2), pages 323-343, March.
  24. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 1999. "The Generalized Dynamic Factor Model: Identification and Estimation," CEPR Discussion Papers 2338, C.E.P.R. Discussion Papers.
  25. Teräsvirta, Timo, 2005. "Forecasting economic variables with nonlinear models," SSE/EFI Working Paper Series in Economics and Finance 598, Stockholm School of Economics, revised 29 Dec 2005.
  26. James H. Stock & Mark W. Watson, 1994. "Evidence on structural instability in macroeconomic times series relations," Working Paper Series, Macroeconomic Issues 94-13, Federal Reserve Bank of Chicago.
  27. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
  28. Peter F. Christoffersen & Francis X. Diebold, 1997. "Optimal prediction under asymmetric loss," Working Papers 97-11, Federal Reserve Bank of Philadelphia.
  29. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-62, April.
  30. Pesaran, M Hashem & Timmermann, Allan G, 2004. "Small Sample Properties of Forecasts From Autoregressive Models Under Structural Breaks," CEPR Discussion Papers 4401, C.E.P.R. Discussion Papers.
  31. Anthony Garratt & Gary Koop & Emi Mise & Shaun Vahey, 2008. "Real-time Prediction with UK Monetary Aggregates in the Presence of Model Uncertainty," Reserve Bank of New Zealand Discussion Paper Series DP2008/13, Reserve Bank of New Zealand.
  32. Ledoit, Olivier & Wolf, Michael, 2003. "Improved estimation of the covariance matrix of stock returns with an application to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 603-621, December.
  33. Heejoon Kang, 1986. "Unstable Weights in the Combination of Forecasts," Management Science, INFORMS, vol. 32(6), pages 683-695, June.
  34. Makridakis, Spyros & Hibon, Michele, 2000. "The M3-Competition: results, conclusions and implications," International Journal of Forecasting, Elsevier, vol. 16(4), pages 451-476.
  35. Deutsch, Melinda & Granger, Clive W. J. & Terasvirta, Timo, 1994. "The combination of forecasts using changing weights," International Journal of Forecasting, Elsevier, vol. 10(1), pages 47-57, June.
  36. Marcellino, Massimiliano, 2002. "Forecast Pooling for Short Time Series of Macroeconomic Variables," CEPR Discussion Papers 3313, C.E.P.R. Discussion Papers.
  37. repec:cup:etheor:v:13:y:1997:i:6:p:808-17 is not listed on IDEAS
  38. Bell, William R, 1996. "Is Seasonal Adjustment a Linear or Nonlinear Data-Filtering Process? Comment," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 387-88, July.
  39. Aiolfi, Marco & Timmermann, Allan, 2006. "Persistence in forecasting performance and conditional combination strategies," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 31-53.
  40. Pesaran, M. Hashem & Timmermann, Allan, 2007. "Selection of estimation window in the presence of breaks," Journal of Econometrics, Elsevier, vol. 137(1), pages 134-161, March.
  41. Jacobson, Tor & Karlsson, Sune, 2002. "Finding Good Predictors for Inflation: A Bayesian Model Averaging Approach," Working Paper Series 138, Sveriges Riksbank (Central Bank of Sweden).
  42. Swanson, Norman R & Zeng, Tian, 2001. "Choosing among Competing Econometric Forecasts: Regression-Based Forecast Combination Using Model Selection," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(6), pages 425-40, September.
  43. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
  44. Watson, Mark W, 1996. "Is Seasonal Adjustment a Linear or Nonlinear Data-Filtering Process? Comment," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 394-96, July.
  45. Clemen, Robert T. & Murphy, Allan H. & Winkler, Robert L., 1995. "Screening probability forecasts: contrasts between choosing and combining," International Journal of Forecasting, Elsevier, vol. 11(1), pages 133-145, March.
  46. Spyros Makridakis & Robert L. Winkler, 1983. "Averages of Forecasts: Some Empirical Results," Management Science, INFORMS, vol. 29(9), pages 987-996, September.
  47. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
  48. Aiolfi, Marco & Favero, Carlo A., 2003. "Model Uncertainty, Thick Modelling and the Predictability of Stock Returns," CEPR Discussion Papers 3997, C.E.P.R. Discussion Papers.
  49. Swanson, Norman R. & White, Halbert, 1997. "Forecasting economic time series using flexible versus fixed specification and linear versus nonlinear econometric models," International Journal of Forecasting, Elsevier, vol. 13(4), pages 439-461, December.
  50. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2004. "The generalised dynamic factor model: consistency and rates," ULB Institutional Repository 2013/10133, ULB -- Universite Libre de Bruxelles.
  51. Marco Aiolfi & Carlos Capistrán & Allan Timmermann, 2010. "Forecast Combinations," CREATES Research Papers 2010-21, Department of Economics and Business Economics, Aarhus University.
  52. Yeung Lewis Chan & James H. Stock & Mark W. Watson, 1999. "A dynamic factor model framework for forecast combination," Spanish Economic Review, Springer;Spanish Economic Association, vol. 1(2), pages 91-121.
  53. Winkler, Robert L., 1989. "Combining forecasts: A philosophical basis and some current issues," International Journal of Forecasting, Elsevier, vol. 5(4), pages 605-609.
  54. Sunil Gupta & Peter C. Wilton, 1987. "Combination of Forecasts: An Extension," Management Science, INFORMS, vol. 33(3), pages 356-372, March.
  55. Robert T. Clemen, 1987. "Combining Overlapping Information," Management Science, INFORMS, vol. 33(3), pages 373-380, March.
  56. Makridakis, Spyros, 1989. "Why combining works?," International Journal of Forecasting, Elsevier, vol. 5(4), pages 601-603.
  57. Findley, David F, 1996. "Is Seasonal Adjustment a Linear or Nonlinear Data-Filtering Process? Comment," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 389-93, July.
  58. Diebold, Francis X. & Pauly, Peter, 1990. "The use of prior information in forecast combination," International Journal of Forecasting, Elsevier, vol. 6(4), pages 503-508, December.
  59. Palm, F. & Zellner, A., 1991. "To combine or not to combine? issues of combining forecasts," CORE Discussion Papers 1991022, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  60. Francis X. Diebold & Jose A. Lopez, 1996. "Forecast Evaluation and Combination," NBER Technical Working Papers 0192, National Bureau of Economic Research, Inc.
  61. Granger, Clive W.J. & Machina, Mark J., 2006. "Forecasting and Decision Theory," Handbook of Economic Forecasting, Elsevier.
  62. Clements,Michael & Hendry,David, 1998. "Forecasting Economic Time Series," Cambridge Books, Cambridge University Press, number 9780521634809, January.
  63. Raffaella Giacomini & Ivana Komunjer, 2003. "Evaluation and Combination of Conditional Quantile Forecasts," Boston College Working Papers in Economics 571, Boston College Department of Economics.
  64. Robert L. Winkler, 1981. "Combining Probability Distributions from Dependent Information Sources," Management Science, INFORMS, vol. 27(4), pages 479-488, April.
  65. Zellner, Arnold & Hong, Chansik & Min, Chung-ki, 1991. "Forecasting turning points in international output growth rates using Bayesian exponentially weighted autoregression, time-varying parameter, and pooling techniques," Journal of Econometrics, Elsevier, vol. 49(1-2), pages 275-304.
  66. Min, C.K. & Zellner, A., 1992. ""Bayesian and Non-Bayesian Methods for Combining Models and Forecasts with Applications to Forecasting International Growth Rates"," Papers 90-92-23, California Irvine - School of Social Sciences.
  67. Diebold, Francis X, 1988. "Serial Correlation and the Combination of Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 6(1), pages 105-11, January.
  68. Clements, Michael P. & Hendry, David F., 2006. "Forecasting with Breaks," Handbook of Economic Forecasting, Elsevier.
  69. Michael P. Clements & David I. Harvey, 2010. "Forecast encompassing tests and probability forecasts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(6), pages 1028-1062.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:bdm:wpaper:2010-04. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dirección de Sistemas)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.