IDEAS home Printed from https://ideas.repec.org/p/cpr/ceprdp/4037.html
   My bibliography  Save this paper

Properties of Optimal Forecasts

Author

Listed:
  • Patton, Andrew J
  • Timmermann, Allan G

Abstract

Evaluation of forecast optimality in economics and finance has almost exclusively been conducted under the assumption of mean squared error loss. Under this loss function optimal forecasts should be unbiased and forecast errors serially uncorrelated at the single-period horizon with increasing variance as the forecast horizon grows. Using analytical results we show in this Paper that all the standard properties of optimal forecasts can be invalid under asymmetric loss and non-linear data-generating processes and thus may be very misleading as a benchmark for an optimal forecast. Our theoretical results suggest that many of the conclusions in the empirical literature concerning sub-optimality of forecasts could be premature. We extend the properties that an optimal forecast should have to a more general setting than previously considered in the literature. We also present new results on forecast error properties that may be tested when the forecaster's loss function is unknown but restrictions can be imposed on the data-generating process, and introduce a change of measure, following which the optimum forecast errors for general loss functions have the same properties as optimum errors under MSE loss.

Suggested Citation

  • Patton, Andrew J & Timmermann, Allan G, 2003. "Properties of Optimal Forecasts," CEPR Discussion Papers 4037, C.E.P.R. Discussion Papers.
  • Handle: RePEc:cpr:ceprdp:4037
    as

    Download full text from publisher

    File URL: http://www.cepr.org/active/publications/discussion_papers/dp.php?dpno=4037
    Download Restriction: CEPR Discussion Papers are free to download for our researchers, subscribers and members. If you fall into one of these categories but have trouble downloading our papers, please contact us at subscribers@cepr.org

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Corradi, Valentina & Swanson, Norman R., 2002. "A consistent test for nonlinear out of sample predictive accuracy," Journal of Econometrics, Elsevier, vol. 110(2), pages 353-381, October.
    2. Drost, Feike C & Nijman, Theo E, 1993. "Temporal Aggregation of GARCH Processes," Econometrica, Econometric Society, vol. 61(4), pages 909-927, July.
    3. Skouras, Spyros, 2007. "Decisionmetrics: A decision-based approach to econometric modelling," Journal of Econometrics, Elsevier, vol. 137(2), pages 414-440, April.
    4. Frederic S. Mishkin, 1983. "Are Market Forecasts Rational?," NBER Chapters,in: A Rational Expectations Approach to Macroeconomics: Testing Policy Ineffectiveness and Efficient-Markets Models, pages 59-75 National Bureau of Economic Research, Inc.
    5. Enrique Sentana, 2005. "Least Squares Predictions and Mean-Variance Analysis," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 3(1), pages 56-78.
    6. repec:cup:etheor:v:7:y:1991:i:2:p:222-35 is not listed on IDEAS
    7. Magnus, J.R. & Pesaran, B., 1989. "The exact multi-period mean-square forecast error for the first-order autoregressive model with an intercept," Other publications TiSEM 9cfd5ae9-e1f8-4184-8b32-3, Tilburg University, School of Economics and Management.
    8. Michael P. Keane & David E. Runkle, 1998. "Are Financial Analysts' Forecasts of Corporate Profits Rational?," Journal of Political Economy, University of Chicago Press, vol. 106(4), pages 768-805, August.
    9. Cargill, Thomas F & Meyer, Robert A, 1980. " The Term Structure of Inflationary Expectations and Market Efficiency," Journal of Finance, American Finance Association, vol. 35(1), pages 57-70, March.
    10. Francis X. Diebold & Jose A. Lopez, 1995. "Forecast evaluation and combination," Research Paper 9525, Federal Reserve Bank of New York.
    11. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    12. West, Kenneth D. & Edison, Hali J. & Cho, Dongchul, 1993. "A utility-based comparison of some models of exchange rate volatility," Journal of International Economics, Elsevier, vol. 35(1-2), pages 23-45, August.
    13. Lakonishok, Josef, 1980. " Stock Market Return Expectations: Some General Properties," Journal of Finance, American Finance Association, vol. 35(4), pages 921-931, September.
    14. repec:cup:etheor:v:13:y:1997:i:6:p:808-17 is not listed on IDEAS
    15. Clive W.J. Granger, 1999. "Outline of forecast theory using generalized cost functions," Spanish Economic Review, Springer;Spanish Economic Association, vol. 1(2), pages 161-173.
    16. De Bondt, Werner F M & Thaler, Richard H, 1990. "Do Security Analysts Overreact?," American Economic Review, American Economic Association, vol. 80(2), pages 52-57, May.
    17. Christoffersen, Peter F. & Diebold, Francis X., 1997. "Optimal Prediction Under Asymmetric Loss," Econometric Theory, Cambridge University Press, vol. 13(06), pages 808-817, December.
    18. Clements,Michael & Hendry,David, 1998. "Forecasting Economic Time Series," Cambridge Books, Cambridge University Press, number 9780521634809, March.
    19. Granger, C. W. J. & Newbold, Paul, 1986. "Forecasting Economic Time Series," Elsevier Monographs, Elsevier, edition 2, number 9780122951831 edited by Shell, Karl.
    20. Dokko, Yoon & Edelstein, Robert H, 1989. "How Well Do Economists Forecast Stock Market Prices? A Study of the Livingston Surveys," American Economic Review, American Economic Association, vol. 79(4), pages 865-871, September.
    21. Elliott, Graham & Komunjer, Ivana & Timmermann, Allan G, 2003. "Estimating Loss Function Parameters," CEPR Discussion Papers 3821, C.E.P.R. Discussion Papers.
    22. Pesando, James E, 1975. "A Note on the Rationality of the Livingston Price Expectations," Journal of Political Economy, University of Chicago Press, vol. 83(4), pages 849-858, August.
    23. Keane, Michael P & Runkle, David E, 1990. "Testing the Rationality of Price Forecasts: New Evidence from Panel Data," American Economic Review, American Economic Association, vol. 80(4), pages 714-735, September.
    24. Christoffersen, Peter & Jacobs, Kris, 2004. "The importance of the loss function in option valuation," Journal of Financial Economics, Elsevier, vol. 72(2), pages 291-318, May.
    25. Zarnowitz, Victor, 1985. "Rational Expectations and Macroeconomic Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 3(4), pages 293-311, October.
    26. Hoque, Asraul & Magnus, Jan R. & Pesaran, Bahram, 1988. "The exact multi-period mean-square forecast error for the first-order autoregressive model," Journal of Econometrics, Elsevier, vol. 39(3), pages 327-346, November.
    27. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    28. Magnus, Jan R. & Pesaran, Bahram, 1989. "The exact multi-period mean-square forecast error for the first-order autoregressive model with an intercept," Journal of Econometrics, Elsevier, vol. 42(2), pages 157-179, October.
    29. Granger, C.W.J. & Pesaran, M. H., 1999. "Economic and Statistical Measures of Forecast Accuracy," Cambridge Working Papers in Economics 9910, Faculty of Economics, University of Cambridge.
    30. Clements, Michael P. & Hendry, David F., 1998. "Forecasting economic processes," International Journal of Forecasting, Elsevier, vol. 14(1), pages 111-131, March.
    31. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Capistrán, Carlos, 2008. "Bias in Federal Reserve inflation forecasts: Is the Federal Reserve irrational or just cautious?," Journal of Monetary Economics, Elsevier, vol. 55(8), pages 1415-1427, November.
    2. Romulo A. Chumacero, 2004. "Forecasting Chilean Industrial Production with Automated Procedures," Econometric Society 2004 Latin American Meetings 177, Econometric Society.
    3. Carlos Capistrán & Gabriel López-Moctezuma, 2008. "Experts´ Macroeconomics Expectations: An Evaluation of Mexican Short-Run Forecasts," Working Papers 2008-11, Banco de México.
    4. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, Elsevier.
    5. Rómulo Chumacero E., 2004. "Forecasting Chilean Industrial Production and Sales With Automated Procedures," Journal Economía Chilena (The Chilean Economy), Central Bank of Chile, vol. 7(3), pages 47-56, December.
    6. Elliott, Graham & Komunjer, Ivana & Timmermann, Allan G, 2003. "Estimating Loss Function Parameters," CEPR Discussion Papers 3821, C.E.P.R. Discussion Papers.
    7. Anatolyev, Stanislav, 2009. "Dynamic modeling under linear-exponential loss," Economic Modelling, Elsevier, vol. 26(1), pages 82-89, January.
    8. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    9. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, Elsevier.
    10. Gonzalez-Rivera, Gloria & Lee, Tae-Hwy & Mishra, Santosh, 2004. "Forecasting volatility: A reality check based on option pricing, utility function, value-at-risk, and predictive likelihood," International Journal of Forecasting, Elsevier, vol. 20(4), pages 629-645.
    11. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    12. McCracken, Michael W., 2007. "Asymptotics for out of sample tests of Granger causality," Journal of Econometrics, Elsevier, vol. 140(2), pages 719-752, October.

    More about this item

    Keywords

    efficient markets; forecast evaluation; loss function; rationality;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cpr:ceprdp:4037. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.