IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

The economic and statistical value of forecast combinations under regime switching: an application to predictable U.S. returns

  • Massimo Guidolin
  • Carrie Fangzhou Na

We address one interesting case — the predictability of excess US asset returns from macroeconomic factors within a flexible regime switching VAR framework — in which the presence of regimes may lead to superior forecasting performance from forecast combinations. After having documented that forecast combinations provide gains in prediction accuracy and these gains are statistically significant, we show that combinations may substantially improve portfolio selection. We find that the best performing forecast combinations are those that either avoid estimating the pooling weights or that minimize the need for estimation. In practice, we report that the best performing combination schemes are based on the principle of relative, past forecasting performance. The economic gains from combining forecasts in portfolio management applications appear to be large, stable over time, and robust to the introduction of realistic transaction costs.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://research.stlouisfed.org/wp/2006/2006-059.pdf
Download Restriction: no

Paper provided by Federal Reserve Bank of St. Louis in its series Working Papers with number 2006-059.

as
in new window

Length:
Date of creation: 2007
Date of revision:
Publication status: Published in Forecasting in the Presence of Structural Breaks and Model Uncertainty, M. Wohar and D. Rapach, eds., May 2008, pp. 601-61
Handle: RePEc:fip:fedlwp:2006-059
Contact details of provider: Postal: P.O. Box 442, St. Louis, MO 63166
Fax: (314)444-8753
Web page: http://www.stlouisfed.org/

More information through EDIRC

Order Information: Email:


References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. James H. Stock & Mark W. Watson, 1998. "A Comparison of Linear and Nonlinear Univariate Models for Forecasting Macroeconomic Time Series," NBER Working Papers 6607, National Bureau of Economic Research, Inc.
  2. Sola, Martin & Driffill, John, 1994. "Testing the term structure of interest rates using a stationary vector autoregression with regime switching," Journal of Economic Dynamics and Control, Elsevier, vol. 18(3-4), pages 601-628.
  3. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-84, March.
  4. John Y. Campbell, 1985. "Stock Returns and the Term Structure," NBER Working Papers 1626, National Bureau of Economic Research, Inc.
  5. Ravazzolo, F. & van Dijk, D.J.C. & Paap, R. & Franses, Ph.H.B.F., 2006. "Bayesian Model Averaging in the Presence of Structural Breaks," Econometric Institute Research Papers EI 2006-33, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  6. Francis X. Diebold & Jose A. Lopez, 1995. "Forecast evaluation and combination," Research Paper 9525, Federal Reserve Bank of New York.
  7. Christopher Neely & Paul Weller, 1999. "Predictability in international asset returns: a reexamination," Working Papers 1997-010, Federal Reserve Bank of St. Louis.
  8. Clements, Michael P. & Smith, Jeremy, 1997. "The performance of alternative forecasting methods for SETAR models," International Journal of Forecasting, Elsevier, vol. 13(4), pages 463-475, December.
  9. Elliott, Graham & Timmermann, Allan, 2002. "Optimal Forecast Combination Under General Loss Functions and Forecast Error Distributions," University of California at San Diego, Economics Working Paper Series qt15r9t2q2, Department of Economics, UC San Diego.
  10. James H. Stock & Mark W. Watson, 2001. "Forecasting output and inflation: the role of asset prices," Proceedings, Federal Reserve Bank of San Francisco, issue Mar.
  11. Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-63, July.
  12. David Hendry & Michael Clements, 2001. "Pooling of Forecasts," Economics Series Working Papers 2002-W09, University of Oxford, Department of Economics.
  13. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
  14. Amit Goyal & Ivo Welch, 2002. "Predicting the Equity Premium With Dividend Ratios," NBER Working Papers 8788, National Bureau of Economic Research, Inc.
  15. Francis X. Diebold & Todd A. Gunther & Anthony S. Tay, 1997. "Evaluating Density Forecasts," Center for Financial Institutions Working Papers 97-37, Wharton School Center for Financial Institutions, University of Pennsylvania.
  16. Rapach, David E. & Wohar, Mark E., 2006. "In-sample vs. out-of-sample tests of stock return predictability in the context of data mining," Journal of Empirical Finance, Elsevier, vol. 13(2), pages 231-247, March.
  17. Ang, Andrew & Bekaert, Geert, 2002. "Regime Switches in Interest Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 163-82, April.
  18. Bekaert, Geert & Hodrick, Robert J, 1992. " Characterizing Predictable Components in Excess Returns on Equity and Foreign Exchange Markets," Journal of Finance, American Finance Association, vol. 47(2), pages 467-509, June.
  19. Turner, C.M. & Startz, R. & Nelson, C.R., 1989. "The Markov Model Of Heteroskedasticity, Risk And Learning In The Stock Market," Working Papers 89-01, University of Washington, Department of Economics.
  20. Christopher M. Turner & Richard Startz & Charles R. Nelson, 1989. "A Markov Model of Heteroskedasticity, Risk, and Learning in the Stock Market," NBER Working Papers 2818, National Bureau of Economic Research, Inc.
  21. Garcia, Rene, 1998. "Asymptotic Null Distribution of the Likelihood Ratio Test in Markov Switching Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(3), pages 763-88, August.
  22. Massimo Guidolin & Sadayuki Ono, 2005. "Are the dynamic linkages between the macroeconomy and asset prices time-varying?," Working Papers 2005-056, Federal Reserve Bank of St. Louis.
  23. Yang, Yuhong, 2004. "Combining Forecasting Procedures: Some Theoretical Results," Econometric Theory, Cambridge University Press, vol. 20(01), pages 176-222, February.
  24. Fenton, Victor M. & Gallant, A. Ronald, 1996. "Qualitative and asymptotic performance of SNP density estimators," Journal of Econometrics, Elsevier, vol. 74(1), pages 77-118, September.
  25. Stock, J.H. & Watson, M.W., 1989. "New Indexes Of Coincident And Leading Economic Indicators," Papers 178d, Harvard - J.F. Kennedy School of Government.
  26. Guidolin, Massimo & Timmermann, Allan, 2006. "Term structure of risk under alternative econometric specifications," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 285-308.
  27. Michael P. Clements & Hans-Martin Krolzig, 1998. "A comparison of the forecast performance of Markov-switching and threshold autoregressive models of US GNP," Econometrics Journal, Royal Economic Society, vol. 1(Conferenc), pages C47-C75.
  28. David M. Cutler & James M. Poterba & Lawrence H. Summers, 1988. "What Moves Stock Prices?," NBER Working Papers 2538, National Bureau of Economic Research, Inc.
  29. Fama, Eugene F. & French, Kenneth R., 1988. "Dividend yields and expected stock returns," Journal of Financial Economics, Elsevier, vol. 22(1), pages 3-25, October.
  30. Andrew Ang & Geert Bekaert, 2002. "International Asset Allocation With Regime Shifts," Review of Financial Studies, Society for Financial Studies, vol. 15(4), pages 1137-1187.
  31. Marco Aiolfi & Carlos Capistrán & Allan Timmermann, 2010. "Forecast Combinations," Working Papers 2010-04, Banco de México.
  32. Allan Timmermann & Massimo Guidolin, 2006. "An econometric model of nonlinear dynamics in the joint distribution of stock and bond returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 1-22.
  33. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
  34. Chan, Louis K. C. & Karceski, Jason & Lakonishok, Josef, 1998. "The Risk and Return from Factors," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 33(02), pages 159-188, June.
  35. Gray, Stephen F., 1996. "Modeling the conditional distribution of interest rates as a regime-switching process," Journal of Financial Economics, Elsevier, vol. 42(1), pages 27-62, September.
  36. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
  37. Fama, Eugene F. & Schwert, G. William, 1977. "Asset returns and inflation," Journal of Financial Economics, Elsevier, vol. 5(2), pages 115-146, November.
  38. Carolina Fugazza & Massimo Guidolin & Giovanna Nicodano, 2006. "Investing for the long-run in European real estate," Working Papers 2006-028, Federal Reserve Bank of St. Louis.
  39. Palm, F. & Zellner, A., 1991. "To combine or not to combine? issues of combining forecasts," CORE Discussion Papers 1991022, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  40. Bossaerts, Peter & Hillion, Pierre, 1999. "Implementing Statistical Criteria to Select Return Forecasting Models: What Do We Learn?," Review of Financial Studies, Society for Financial Studies, vol. 12(2), pages 405-28.
  41. repec:cup:cbooks:9780521634809 is not listed on IDEAS
  42. Francis X. Diebold & Glenn D. Rudebusch & Daniel E. Sichel, 1991. "Further evidence on business cycle duration dependence," Working Papers 91-11, Federal Reserve Bank of Philadelphia.
  43. Marco Aiolfi & Carlo Ambrogio Favero, . "Model Uncertainty, Thick Modelling and the predictability of Stock Returns," Working Papers 221, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  44. Massimo Guidolin & Allan Timmermann, 2005. "Economic Implications of Bull and Bear Regimes in UK Stock and Bond Returns," Economic Journal, Royal Economic Society, vol. 115(500), pages 111-143, 01.
  45. Robert B. Davies, 2002. "Hypothesis testing when a nuisance parameter is present only under the alternative: Linear model case," Biometrika, Biometrika Trust, vol. 89(2), pages 484-489, June.
  46. Berkowitz, Jeremy, 2001. "Testing Density Forecasts, with Applications to Risk Management," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 465-74, October.
  47. Bunn, Derek W., 1985. "Statistical efficiency in the linear combination of forecasts," International Journal of Forecasting, Elsevier, vol. 1(2), pages 151-163.
  48. Fama, Eugene F. & French, Kenneth R., 1989. "Business conditions and expected returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 25(1), pages 23-49, November.
  49. Diebold, Francis X, 1988. "Serial Correlation and the Combination of Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 6(1), pages 105-11, January.
  50. Paye, Bradley S. & Timmermann, Allan, 2006. "Instability of return prediction models," Journal of Empirical Finance, Elsevier, vol. 13(3), pages 274-315, June.
  51. Pesaran, M Hashem & Timmermann, Allan, 1995. " Predictability of Stock Returns: Robustness and Economic Significance," Journal of Finance, American Finance Association, vol. 50(4), pages 1201-28, September.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:fip:fedlwp:2006-059. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Anna Xiao)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.