IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

The economic and statistical value of forecast combinations under regime switching: an application to predictable U.S. returns

Listed author(s):
  • Massimo Guidolin
  • Carrie Fangzhou Na

We address one interesting case — the predictability of excess US asset returns from macroeconomic factors within a flexible regime switching VAR framework — in which the presence of regimes may lead to superior forecasting performance from forecast combinations. After having documented that forecast combinations provide gains in prediction accuracy and these gains are statistically significant, we show that combinations may substantially improve portfolio selection. We find that the best performing forecast combinations are those that either avoid estimating the pooling weights or that minimize the need for estimation. In practice, we report that the best performing combination schemes are based on the principle of relative, past forecasting performance. The economic gains from combining forecasts in portfolio management applications appear to be large, stable over time, and robust to the introduction of realistic transaction costs.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://research.stlouisfed.org/wp/2006/2006-059.pdf
Download Restriction: no

Paper provided by Federal Reserve Bank of St. Louis in its series Working Papers with number 2006-059.

as
in new window

Length:
Date of creation: 2007
Publication status: Published in Forecasting in the Presence of Structural Breaks and Model Uncertainty, M. Wohar and D. Rapach, eds., May 2008, pp. 601-61
Handle: RePEc:fip:fedlwp:2006-059
Contact details of provider: Postal:
P.O. Box 442, St. Louis, MO 63166

Fax: (314)444-8753
Web page: http://www.stlouisfed.org/

More information through EDIRC

Order Information: Email:


References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Francis X. Diebold & Todd A. Gunther & Anthony S. Tay, "undated". "Evaluating Density Forecasts," CARESS Working Papres 97-18, University of Pennsylvania Center for Analytic Research and Economics in the Social Sciences.
  2. Clements, Michael P. & Smith, Jeremy, 1997. "The performance of alternative forecasting methods for SETAR models," International Journal of Forecasting, Elsevier, vol. 13(4), pages 463-475, December.
  3. Massimo Guidolin & Allan Timmermann, 2005. "Economic Implications of Bull and Bear Regimes in UK Stock and Bond Returns," Economic Journal, Royal Economic Society, vol. 115(500), pages 111-143, 01.
  4. PALM, Franz C. & ZELLNER, Arnold, "undated". "To Combine or not to Combine? Issues of Combining Forecasts," CORE Discussion Papers RP 1027, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  5. Paye, Bradley S. & Timmermann, Allan, 2006. "Instability of return prediction models," Journal of Empirical Finance, Elsevier, vol. 13(3), pages 274-315, June.
  6. Turner, C.M. & Startz, R. & Nelson, C.R., 1989. "The Markov Model Of Heteroskedasticity, Risk And Learning In The Stock Market," Working Papers 89-01, University of Washington, Department of Economics.
  7. Andrew Ang & Geert Bekaert, 2002. "International Asset Allocation With Regime Shifts," Review of Financial Studies, Society for Financial Studies, vol. 15(4), pages 1137-1187.
  8. Yang, Yuhong, 2004. "Combining Forecasting Procedures: Some Theoretical Results," Econometric Theory, Cambridge University Press, vol. 20(01), pages 176-222, February.
  9. Berkowitz, Jeremy, 2001. "Testing Density Forecasts, with Applications to Risk Management," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 465-474, October.
  10. Marco Aiolfi & Carlo Ambrogio Favero, "undated". "Model Uncertainty, Thick Modelling and the predictability of Stock Returns," Working Papers 221, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  11. Fenton, Victor M. & Gallant, A. Ronald, 1996. "Qualitative and asymptotic performance of SNP density estimators," Journal of Econometrics, Elsevier, vol. 74(1), pages 77-118, September.
  12. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
  13. Neely, Christopher J. & Weller, Paul, 2000. "Predictability in International Asset Returns: A Reexamination," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 35(04), pages 601-620, December.
  14. Rapach, David E. & Wohar, Mark E., 2006. "In-sample vs. out-of-sample tests of stock return predictability in the context of data mining," Journal of Empirical Finance, Elsevier, vol. 13(2), pages 231-247, March.
  15. Fama, Eugene F. & French, Kenneth R., 1989. "Business conditions and expected returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 25(1), pages 23-49, November.
  16. Amit Goyal & Ivo Welch, 2003. "Predicting the Equity Premium with Dividend Ratios," Management Science, INFORMS, vol. 49(5), pages 639-654, May.
  17. Turner, Christopher M. & Startz, Richard & Nelson, Charles R., 1989. "A Markov model of heteroskedasticity, risk, and learning in the stock market," Journal of Financial Economics, Elsevier, vol. 25(1), pages 3-22, November.
  18. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
  19. Francis X. Diebold & Jose A. Lopez, 1995. "Forecast evaluation and combination," Research Paper 9525, Federal Reserve Bank of New York.
  20. Pesaran, M Hashem & Timmermann, Allan, 1995. " Predictability of Stock Returns: Robustness and Economic Significance," Journal of Finance, American Finance Association, vol. 50(4), pages 1201-1228, September.
  21. Francis X. Diebold & Glenn Rudebusch & Daniel Sichel, 1993. "Further Evidence on Business-Cycle Duration Dependence," NBER Chapters,in: Business Cycles, Indicators and Forecasting, pages 255-284 National Bureau of Economic Research, Inc.
  22. Guidolin, Massimo & Ono, Sadayuki, 2006. "Are the dynamic linkages between the macroeconomy and asset prices time-varying?," Journal of Economics and Business, Elsevier, vol. 58(5-6), pages 480-518.
  23. Gray, Stephen F., 1996. "Modeling the conditional distribution of interest rates as a regime-switching process," Journal of Financial Economics, Elsevier, vol. 42(1), pages 27-62, September.
  24. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
  25. Allan Timmermann & Massimo Guidolin, 2006. "An econometric model of nonlinear dynamics in the joint distribution of stock and bond returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 1-22.
  26. Chan, Louis K. C. & Karceski, Jason & Lakonishok, Josef, 1998. "The Risk and Return from Factors," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 33(02), pages 159-188, June.
  27. Ravazzolo, F. & van Dijk, D.J.C. & Paap, R. & Franses, Ph.H.B.F., 2006. "Bayesian Model Averaging in the Presence of Structural Breaks," Econometric Institute Research Papers EI 2006-33, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  28. David F. Hendry & Michael P. Clements, 2004. "Pooling of forecasts," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 1-31, 06.
  29. Garcia, Rene, 1998. "Asymptotic Null Distribution of the Likelihood Ratio Test in Markov Switching Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(3), pages 763-788, August.
  30. Robert B. Davies, 2002. "Hypothesis testing when a nuisance parameter is present only under the alternative: Linear model case," Biometrika, Biometrika Trust, vol. 89(2), pages 484-489, June.
  31. Clements,Michael & Hendry,David, 1998. "Forecasting Economic Time Series," Cambridge Books, Cambridge University Press, number 9780521634809.
  32. Fama, Eugene F. & Schwert, G. William, 1977. "Asset returns and inflation," Journal of Financial Economics, Elsevier, vol. 5(2), pages 115-146, November.
  33. Campbell, John Y., 1987. "Stock returns and the term structure," Journal of Financial Economics, Elsevier, vol. 18(2), pages 373-399, June.
  34. Guidolin, Massimo & Timmermann, Allan, 2006. "Term structure of risk under alternative econometric specifications," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 285-308.
  35. Bunn, Derek W., 1985. "Statistical efficiency in the linear combination of forecasts," International Journal of Forecasting, Elsevier, vol. 1(2), pages 151-163.
  36. Elliott, Graham & Timmermann, Allan, 2004. "Optimal forecast combinations under general loss functions and forecast error distributions," Journal of Econometrics, Elsevier, vol. 122(1), pages 47-79, September.
  37. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, Elsevier.
  38. Diebold, Francis X, 1988. "Serial Correlation and the Combination of Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 6(1), pages 105-111, January.
  39. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
  40. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
  41. Bossaerts, Peter & Hillion, Pierre, 1999. "Implementing Statistical Criteria to Select Return Forecasting Models: What Do We Learn?," Review of Financial Studies, Society for Financial Studies, vol. 12(2), pages 405-428.
  42. James H. Stock & Mark W. Watson, 1989. "New Indexes of Coincident and Leading Economic Indicators," NBER Chapters,in: NBER Macroeconomics Annual 1989, Volume 4, pages 351-409 National Bureau of Economic Research, Inc.
  43. Carolina Fugazza & Massimo Guidolin & Giovanna Nicodano, 2007. "Investing for the Long-run in European Real Estate," The Journal of Real Estate Finance and Economics, Springer, vol. 34(1), pages 35-80, January.
  44. Bekaert, Geert & Hodrick, Robert J, 1992. " Characterizing Predictable Components in Excess Returns on Equity and Foreign Exchange Markets," Journal of Finance, American Finance Association, vol. 47(2), pages 467-509, June.
  45. Sola, Martin & Driffill, John, 1994. "Testing the term structure of interest rates using a stationary vector autoregression with regime switching," Journal of Economic Dynamics and Control, Elsevier, vol. 18(3-4), pages 601-628.
  46. Ang, Andrew & Bekaert, Geert, 2002. "Regime Switches in Interest Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 163-182, April.
  47. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
  48. Michael P. Clements & Hans-Martin Krolzig, 1998. "A comparison of the forecast performance of Markov-switching and threshold autoregressive models of US GNP," Econometrics Journal, Royal Economic Society, vol. 1(Conferenc), pages 47-75.
  49. Fama, Eugene F. & French, Kenneth R., 1988. "Dividend yields and expected stock returns," Journal of Financial Economics, Elsevier, vol. 22(1), pages 3-25, October.
  50. David H. Cutler & James M. Poterba & Lawrence H. Summers, 1988. "What Moves Stock Prices?," Working papers 487, Massachusetts Institute of Technology (MIT), Department of Economics.
  51. James H. Stock & Mark W. Watson, 1998. "A Comparison of Linear and Nonlinear Univariate Models for Forecasting Macroeconomic Time Series," NBER Working Papers 6607, National Bureau of Economic Research, Inc.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:fip:fedlwp:2006-059. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Anna Xiao)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.