IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Oil price density forecasts: exploring the linkages with stock markets

  • Marco J. Lombardi


    (Bank for International Settlements,)

  • Francesco Ravazzolo


    (Norges Bank (Central Bank of Norway) and BI Norwegian Business School)

In the recent years several commentators hinted at an increase of the correlation between equity and commodity prices, and blamed investment in commodity-related products for this. First, this paper investigates such claims by looking at various measures of correlation. Next, we assess to what extent correlations between oil and equity prices can be exploited for asset allocation. We develop a time-varying Bayesian Dynamic Conditional Correlation model for volatilities and correlations and nd that joint modelling of oil and equity prices produces more accurate point and density forecasts for oil which lead to substantial bene ts in portfolio wealth.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Norges Bank in its series Working Paper with number 2012/24.

in new window

Length: 29 pages
Date of creation: 20 Dec 2012
Date of revision:
Handle: RePEc:bno:worpap:2012_24
Contact details of provider: Postal: Postboks 1179 Sentrum, 0107 Oslo
Phone: +47 22 31 60 00
Fax: +47 22 41 31 05
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
  2. Roengchai Tansuchat & Chia-Lin Chang & Michael McAleer, 2010. "Crude Oil Hedging Strategies Using Dynamic Multivariate GARCH," CIRJE F-Series CIRJE-F-704, CIRJE, Faculty of Economics, University of Tokyo.
  3. Christian Kascha & Francesco Ravazzolo, 2010. "Combining inflation density forecasts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 231-250.
  4. Bassam Fattouh, Lutz Kilian, and Lavan Mahadeva, 2013. "The Role of Speculation in Oil Markets: What Have We Learned So Far?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
  5. Gianni Amisano & Raffaella Giacomini, 2005. "Comparing Density Forecsts via Weighted Likelihood Ratio Tests," Working Papers ubs0504, University of Brescia, Department of Economics.
  6. Kilian, Lutz, 2006. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," CEPR Discussion Papers 5994, C.E.P.R. Discussion Papers.
  7. Domenico Ferraro & Ken Rogoff & Barbara Rossi, 2011. "Can oil prices forecast exchange rates?," Working Papers 11-34, Federal Reserve Bank of Philadelphia.
  8. Francesco Ravazzolo & Shaun P. Vahey, 2010. "Forecast Densities for Economic Aggregates from Disaggregate Ensembles," CAMA Working Papers 2010-10, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
  9. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
  10. Jan J. J. Groen & Richard Paap & Francesco Ravazzolo, 2009. "Real-Time Inflation Forecasting in a Changing World," Working Paper 2009/16, Norges Bank.
  11. Guidolin, Massimo & Timmermann, Allan, 2007. "Asset allocation under multivariate regime switching," Journal of Economic Dynamics and Control, Elsevier, vol. 31(11), pages 3503-3544, November.
  12. West, Kenneth D. & Edison, Hali J. & Cho, Dongchul, 1993. "A utility-based comparison of some models of exchange rate volatility," Journal of International Economics, Elsevier, vol. 35(1-2), pages 23-45, August.
  13. Kandel, Shmuel & Stambaugh, Robert F, 1996. " On the Predictability of Stock Returns: An Asset-Allocation Perspective," Journal of Finance, American Finance Association, vol. 51(2), pages 385-424, June.
  14. Ravazzolo, F. & van Dijk, D.J.C. & Paap, R. & Franses, Ph.H.B.F., 2006. "Bayesian Model Averaging in the Presence of Structural Breaks," Econometric Institute Research Papers EI 2006-33, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  15. Bicchetti, David & Maystre, Nicolas Maystre, 2013. "The synchronized and long-lasting structural change on commodity markets: Evidence from high frequency data," Algorithmic Finance, IOS Press, vol. 2(3-4), pages 233-239.
  16. Lutz Kilian & Clara Vega, 2008. "Do energy prices respond to U.S. macroeconomic news? a test of the hypothesis of predetermined energy prices," International Finance Discussion Papers 957, Board of Governors of the Federal Reserve System (U.S.).
  17. Kan, Raymond & Zhou, Guofu, 2007. "Optimal Portfolio Choice with Parameter Uncertainty," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 42(03), pages 621-656, September.
  18. Baumeister, Christiane & Kilian, Lutz, 2011. "Real-Time Forecasts of the Real Price of Oil," CEPR Discussion Papers 8414, C.E.P.R. Discussion Papers.
  19. Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-63, July.
  20. Della Corte, Pasquale & Sarno, Lucio & Tsiakas, Ilias, 2010. "Spot and Forward Volatility in Foreign Exchange," CEPR Discussion Papers 7893, C.E.P.R. Discussion Papers.
  21. Dr. James Mitchell, 2005. "Evaluating, comparing and combining density forecasts using the KLIC with an application to the Bank of England and NIESR ÔfanÕ charts of inflation," NIESR Discussion Papers 777, National Institute of Economic and Social Research.
  22. Jaime Casassus & Freddy Higuera, 2011. "Stock Return Predictability and Oil Prices," Documentos de Trabajo 406, Instituto de Economia. Pontificia Universidad Católica de Chile..
  23. Kilian, Lutz & Park, Cheolbeom, 2007. "The Impact of Oil Price Shocks on the U.S. Stock Market," CEPR Discussion Papers 6166, C.E.P.R. Discussion Papers.
  24. Massimo Guidolin & Carrie Fangzhou Na, 2007. "The economic and statistical value of forecast combinations under regime switching: an application to predictable U.S. returns," Working Papers 2006-059, Federal Reserve Bank of St. Louis.
  25. James Mitchell & Stephen G. Hall, 2005. "Evaluating, Comparing and Combining Density Forecasts Using the KLIC with an Application to the Bank of England and NIESR 'Fan' Charts of Inflation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 995-1033, December.
  26. Gneiting, Tilmann & Ranjan, Roopesh, 2011. "Comparing Density Forecasts Using Threshold- and Quantile-Weighted Scoring Rules," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(3), pages 411-422.
  27. Monica Billio & Roberto Casarin & Francesco Ravazzolo & Herman K. van Dijk, 2012. "Time-varying Combinations of Predictive Densities using Nonlinear Filtering," Tinbergen Institute Discussion Papers 12-118/III, Tinbergen Institute.
  28. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
  29. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-50, July.
  30. Jeff Fleming, 2001. "The Economic Value of Volatility Timing," Journal of Finance, American Finance Association, vol. 56(1), pages 329-352, 02.
  31. Hall, Stephen G. & Mitchell, James, 2007. "Combining density forecasts," International Journal of Forecasting, Elsevier, vol. 23(1), pages 1-13.
  32. Tilmann Gneiting & Roopesh Ranjan, 2011. "Comparing Density Forecasts Using Threshold- and Quantile-Weighted Scoring Rules," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 411-422, July.
  33. Pettenuzzo, Davide & Timmermann, Allan, 2011. "Predictability of stock returns and asset allocation under structural breaks," Journal of Econometrics, Elsevier, vol. 164(1), pages 60-78, September.
  34. Nicholas Barberis, 2000. "Investing for the Long Run when Returns Are Predictable," Journal of Finance, American Finance Association, vol. 55(1), pages 225-264, 02.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:bno:worpap:2012_24. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.