IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Time-varying combinations of predictive densities using nonlinear filtering

  • Billio, Monica
  • Casarin, Roberto
  • Ravazzolo, Francesco
  • van Dijk, Herman K.

We propose a Bayesian combination approach for multivariate predictive densities which relies upon a distributional state space representation of the combination weights. Several specifications of multivariate time-varying weights are introduced with a particular focus on weight dynamics driven by the past performance of the predictive densities and the use of learning mechanisms. In the proposed approach the model set can be incomplete, meaning that all models can be individually misspecified. A Sequential Monte Carlo method is proposed to approximate the filtering and predictive densities. The combination approach is assessed using statistical and utility-based performance measures for evaluating density forecasts of simulated data, US macroeconomic time series and surveys of stock market prices. Simulation results indicate that, for a set of linear autoregressive models, the combination strategy is successful in selecting, with probability close to one, the true model when the model set is complete and it is able to detect parameter instability when the model set includes the true model that has generated subsamples of data. Also, substantial uncertainty appears in the weights when predictors are similar; residual uncertainty reduces when the model set is complete; and learning reduces this uncertainty. For the macro series we find that incompleteness of the models is relatively large in the 1970’s, the beginning of the 1980’s and during the recent financial crisis, and lower during the Great Moderation; the predicted probabilities of recession accurately compare with the NBER business cycle dating; model weights have substantial uncertainty attached. With respect to returns of the S&P 500 series, we find that an investment strategy using a combination of predictions from professional forecasters and from a white noise model puts more weight on the white noise model in the beginning of the 1990’s and switches to giving more weight to the professional forecasts over time. Information on the complete predictive distribution and not just on some moments turns out to be very important, above all during turbulent times such as the recent financial crisis. More generally, the proposed distributional state space representation offers great flexibility in combining densities.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0304407613000869
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Econometrics.

Volume (Year): 177 (2013)
Issue (Month): 2 ()
Pages: 213-232

as
in new window

Handle: RePEc:eee:econom:v:177:y:2013:i:2:p:213-232
Contact details of provider: Web page: http://www.elsevier.com/locate/jeconom

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Hall, Stephen G. & Mitchell, James, 2007. "Combining density forecasts," International Journal of Forecasting, Elsevier, vol. 23(1), pages 1-13.
  2. Gary Koop & Dimitris Korobilis, 2011. "Forecasting Inflation Using Dynamic Model Averaging," Working Papers 1119, University of Strathclyde Business School, Department of Economics.
  3. KOROBILIS, Dimitris, 2011. "VAR forecasting using Bayesian variable selection," CORE Discussion Papers 2011022, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  4. Nicholas Barberis, 2000. "Investing for the Long Run when Returns Are Predictable," Journal of Finance, American Finance Association, vol. 55(1), pages 225-264, 02.
  5. Ang, Andrew & Bekaert, Geert & Wei, Min, 2007. "Do macro variables, asset markets, or surveys forecast inflation better?," Journal of Monetary Economics, Elsevier, vol. 54(4), pages 1163-1212, May.
  6. Geweke, John & Amisano, Gianni, 2008. "Comparing and evaluating Bayesian predictive distributions of assets returns," Working Paper Series 0969, European Central Bank.
  7. Kenneth D. West, 1994. "Asymptotic Inference About Predictive Ability," Macroeconomics 9410002, EconWPA.
  8. Francis X. Diebold & Peter Pauly, 1987. "The use of prior information in forecast combination," Special Studies Papers 218, Board of Governors of the Federal Reserve System (U.S.).
  9. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
  10. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
  11. Gianna Boero & Jeremy Smith & KennethF. Wallis, 2008. "Uncertainty and Disagreement in Economic Prediction: The Bank of England Survey of External Forecasters," Economic Journal, Royal Economic Society, vol. 118(530), pages 1107-1127, 07.
  12. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-44, January.
  13. Hansen, Bruce E., 2008. "Least-squares forecast averaging," Journal of Econometrics, Elsevier, vol. 146(2), pages 342-350, October.
  14. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
  15. repec:cup:cbooks:9780521634809 is not listed on IDEAS
  16. Jeff Fleming, 2001. "The Economic Value of Volatility Timing," Journal of Finance, American Finance Association, vol. 56(1), pages 329-352, 02.
  17. Monica Billio & Domenico Sartore & Carlo Toffano, 2000. "Combining forecasts: some results on exchange and interest rates," The European Journal of Finance, Taylor & Francis Journals, vol. 6(2), pages 126-145.
  18. Christian Kascha & Francesco Ravazzolo, 2010. "Combining inflation density forecasts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 231-250.
  19. Liang, Hua & Zou, Guohua & Wan, Alan T. K. & Zhang, Xinyu, 2011. "Optimal Weight Choice for Frequentist Model Average Estimators," Journal of the American Statistical Association, American Statistical Association, vol. 106(495), pages 1053-1066.
  20. Robert L. Winkler, 1981. "Combining Probability Distributions from Dependent Information Sources," Management Science, INFORMS, vol. 27(4), pages 479-488, April.
  21. James Mitchell & Stephen G. Hall, 2005. "Evaluating, Comparing and Combining Density Forecasts Using the KLIC with an Application to the Bank of England and NIESR 'Fan' Charts of Inflation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 995-1033, December.
  22. Koop, Gary & Korobilis, Dimitris, 2012. "Large Time-Varying Parameter VARs," SIRE Discussion Papers 2012-14, Scottish Institute for Research in Economics (SIRE).
  23. Kajal Lahiri & Xuguang Sheng, 2009. "Measuring Forecast Uncertainty by Disagreement: The Missing Link," Discussion Papers 09-06, University at Albany, SUNY, Department of Economics.
  24. Monica Billio & Roberto Casarin, 2010. "Identifying business cycle turning points with sequential Monte Carlo methods: an online and real-time application to the Euro area," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 145-167.
  25. Jan J. J. Groen & Richard Paap & Francesco Ravazzolo, 2009. "Real-time inflation forecasting in a changing world," Staff Reports 388, Federal Reserve Bank of New York.
  26. Yash P. Mehra, 2002. "Survey measures of expected inflation : revisiting the issues of predictive content and rationality," Economic Quarterly, Federal Reserve Bank of Richmond, issue Sum, pages 17-36.
  27. Anne Sofie Jore & James Mitchell & Shaun Vahey, 2008. "Combining Forecast Densities from VARs with Uncertain Instabilities," Reserve Bank of New Zealand Discussion Paper Series DP2008/18, Reserve Bank of New Zealand.
  28. Antonello D'Agostino & Luca Gambetti & Domenico Giannone, 2009. "Macroeconomic Forecasting and Structural Change," Working Papers ECARES 2009_020, ULB -- Universite Libre de Bruxelles.
  29. Gianni Amisano & Raffaella Giacomini, 2005. "Comparing Density Forecsts via Weighted Likelihood Ratio Tests," Working Papers ubs0504, University of Brescia, Department of Economics.
  30. Dangl, Thomas & Halling, Michael, 2012. "Predictive regressions with time-varying coefficients," Journal of Financial Economics, Elsevier, vol. 106(1), pages 157-181.
  31. Todd E. Clark & Francesco Ravazzolo, 2012. "The macroeconomic forecasting performance of autoregressive models with alternative specifications of time-varying volatility," Working Paper 1218, Federal Reserve Bank of Cleveland.
  32. Guidolin, Massimo & Timmermann, Allan G, 2007. "Forecasts of US Short-term Interest Rates: A Flexible Forecast Combination Approach," CEPR Discussion Papers 6188, C.E.P.R. Discussion Papers.
  33. West, Kenneth D. & Edison, Hali J. & Cho, Dongchul, 1993. "A utility-based comparison of some models of exchange rate volatility," Journal of International Economics, Elsevier, vol. 35(1-2), pages 23-45, August.
  34. Lennart Hoogerheide & Richard Kleijn & Francesco Ravazzolo & Herman K. Van Dijk & Marno Verbeek, 2010. "Forecast accuracy and economic gains from Bayesian model averaging using time-varying weights," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 251-269.
  35. Sloughter, J. McLean & Gneiting, Tilmann & Raftery, Adrian E., 2010. "Probabilistic Wind Speed Forecasting Using Ensembles and Bayesian Model Averaging," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 25-35.
  36. Markku Lanne, 2009. "Properties of Market-Based and Survey Macroeconomic Forecasts for Different Data Releases," Economics Bulletin, AccessEcon, vol. 29(3), pages 2231-2240.
  37. repec:taf:jnlbes:v:30:y:2012:i:1:p:1-17 is not listed on IDEAS
  38. Fama, Eugene F. & Gibbons, Michael R., 1984. "A comparison of inflation forecasts," Journal of Monetary Economics, Elsevier, vol. 13(3), pages 327-348, May.
  39. Terui, Nobuhiko & van Dijk, Herman K., 2002. "Combined forecasts from linear and nonlinear time series models," International Journal of Forecasting, Elsevier, vol. 18(3), pages 421-438.
  40. Geweke, John & Whiteman, Charles, 2006. "Bayesian Forecasting," Handbook of Economic Forecasting, Elsevier.
  41. Kenneth D. West & Todd Clark, 2006. "Approximately Normal Tests for Equal Predictive Accuracy in Nested Models," NBER Technical Working Papers 0326, National Bureau of Economic Research, Inc.
  42. Billio Monica & Casarin Roberto, 2011. "Beta Autoregressive Transition Markov-Switching Models for Business Cycle Analysis," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 15(4), pages 1-32, September.
  43. Berkowitz, Jeremy, 2001. "Testing Density Forecasts, with Applications to Risk Management," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 465-74, October.
  44. Gneiting, Tilmann & Ranjan, Roopesh, 2011. "Comparing Density Forecasts Using Threshold- and Quantile-Weighted Scoring Rules," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(3), pages 411-422.
  45. William A. Branch, 2004. "The Theory of Rationally Heterogeneous Expectations: Evidence from Survey Data on Inflation Expectations," Economic Journal, Royal Economic Society, vol. 114(497), pages 592-621, 07.
  46. repec:cup:cbooks:9780521632423 is not listed on IDEAS
  47. Lloyd B. Thomas, 1999. "Survey Measures of Expected U.S. Inflation," Journal of Economic Perspectives, American Economic Association, vol. 13(4), pages 125-144, Fall.
  48. Bruce E. Hansen, 2007. "Least Squares Model Averaging," Econometrica, Econometric Society, vol. 75(4), pages 1175-1189, 07.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:177:y:2013:i:2:p:213-232. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.