IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Are macroeconomic variables useful for forecasting the distribution of U.S. inflation?

  • Manzan, Sebastiano
  • Zerom, Dawit
Registered author(s):

    Much of the inflation forecasting literature examines the ability of macroeconomic indicators to predict the mean inflation accurately. For the period after 1984, the existing empirical evidence largely suggests that the likelihood of predicting inflation accurately using macroeconomic indicators is no better than a random walk model. We expand the scope of inflation predictability by exploring whether macroeconomic indicators are useful in predicting the distribution of inflation. We consider six commonly-used macro indicators and core/non-core versions of the Consumer Price Index (CPI) and the Personal Consumption Expenditure (PCE) deflator as measures of inflation. Based on monthly data and for the forecast period after 1984, we find that some of the macro indicators, such as the unemployment rate, housing starts and the term spread, provide significant out-of-sample predictability for the distribution of core inflation. An analysis of the quantiles of the predictive distribution reveals interesting patterns which would otherwise be ignored by existing inflation forecasting approaches that rely only on forecasting the mean. We also illustrate the importance of inflation distribution forecasting in evaluating some events which are of policy interest by focusing on predicting the likelihood of deflation.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal International Journal of Forecasting.

    Volume (Year): 29 (2013)
    Issue (Month): 3 ()
    Pages: 469-478

    in new window

    Handle: RePEc:eee:intfor:v:29:y:2013:i:3:p:469-478
    DOI: 10.1016/j.ijforecast.2013.01.005
    Contact details of provider: Web page:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Clark, Todd E., 2011. "Real-Time Density Forecasts From Bayesian Vector Autoregressions With Stochastic Volatility," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(3), pages 327-341.
    2. Anne Sofie Jore & James Mitchell & Shaun P. Vahey, 2010. "Combining forecast densities from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 621-634.
    3. Ang, Andrew & Bekaert, Geert & Wei, Min, 2007. "Do macro variables, asset markets, or surveys forecast inflation better?," Journal of Monetary Economics, Elsevier, vol. 54(4), pages 1163-1212, May.
    4. Gneiting, Tilmann & Ranjan, Roopesh, 2011. "Comparing Density Forecasts Using Threshold- and Quantile-Weighted Scoring Rules," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(3), pages 411-422.
    5. D'Agostino, Antonello & Giannone, Domenico & Surico, Paolo, 2007. "(Un)Predictability and Macroeconomic Stability," CEPR Discussion Papers 6594, C.E.P.R. Discussion Papers.
    6. Gianni Amisano & Raffaella Giacomini, 2005. "Comparing Density Forecsts via Weighted Likelihood Ratio Tests," Working Papers ubs0504, University of Brescia, Department of Economics.
    7. Hodrick, Robert J & Prescott, Edward C, 1997. "Postwar U.S. Business Cycles: An Empirical Investigation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 29(1), pages 1-16, February.
    8. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    9. Barbara Rossi & Tatevik Sekhposyan, 2010. "Has Models' Forecasting Performance for US Output Growth and Inflation Changed over Time, and When?," Working Papers 10-16, Duke University, Department of Economics.
    10. Alan Greenspan, 2004. "Risk and Uncertainty in Monetary Policy," American Economic Review, American Economic Association, vol. 94(2), pages 33-40, May.
    11. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
    12. Giacomini, Raffaella & Rossi, Barbara, 2008. "Forecast Comparisons in Unstable Environments," Working Papers 08-04, Duke University, Department of Economics.
    13. Kilian, Lutz & Manganelli, Simone, 2007. "The Central Banker as a Risk Manager: Estimating the Federal Reserve's Preferences under Greenspan," CEPR Discussion Papers 6031, C.E.P.R. Discussion Papers.
    14. James H. Stock & Mark W. Watson, 2007. "Erratum to "Why Has U.S. Inflation Become Harder to Forecast?"," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1849-1849, October.
    15. James H. Stock & Mark W. Watson, 2006. "Why Has U.S. Inflation Become Harder to Forecast?," NBER Working Papers 12324, National Bureau of Economic Research, Inc.
    16. Andrew Atkeson & Lee E. Ohanian, 2001. "Are Phillips curves useful for forecasting inflation?," Quarterly Review, Federal Reserve Bank of Minneapolis, issue Win, pages 2-11.
    17. James H. Stock & Mark W. Watson, 2008. "Phillips Curve Inflation Forecasts," NBER Working Papers 14322, National Bureau of Economic Research, Inc.
    18. Victor Chernozhukov & Ivan Fernandez-Val & Alfred Galichon, 2010. "Quantile and Probability Curves without Crossing," Sciences Po publications info:hdl:2441/5rkqqmvrn4t, Sciences Po.
    19. Berkowitz, Jeremy, 2001. "Testing Density Forecasts, with Applications to Risk Management," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 465-74, October.
    20. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    21. Jonas D. M. Fisher & Chin Te Liu & Ruilin Zhou, 2002. "When can we forecast inflation?," Economic Perspectives, Federal Reserve Bank of Chicago, issue Q I, pages 32-44.
    22. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    23. James Mitchell & Kenneth F. Wallis, 2011. "Evaluating density forecasts: forecast combinations, model mixtures, calibration and sharpness," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(6), pages 1023-1040, 09.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:29:y:2013:i:3:p:469-478. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Shamier, Wendy)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.