IDEAS home Printed from https://ideas.repec.org/p/bno/worpap/2008_01.html
   My bibliography  Save this paper

Combining forecast densities from VARs with uncertain instabilities

Author

Listed:
  • Anne-Sofie Jore

    () (Norges Bank (Central Bank of Norway))

  • James Mitchell

    () (National Institute of Economic and Social Research (NIESR))

  • Shaun P. Vahey

    (Norges Bank (Central Bank of Norway) and Reserve Bank of New Zealand)

Abstract

Clark and McCracken (2008) argue that combining real-time point forecasts from VARs of output, prices and interest rates improves point forecast accuracy in the presence of uncertain model instabilities. In this paper, we generalize their approach to consider forecast density combinations and evaluations. Whereas Clark and McCracken (2008) show that the point forecast errors from particular equal-weight pairwise averages are typically comparable or better than benchmark univariate time series models, we show that neither approach produces accurate real-time forecast densities for recent US data. If greater weight is given to models that allow for the shifts in volatilities associated with the Great Moderation, predictive density accuracy improves substantially.

Suggested Citation

  • Anne-Sofie Jore & James Mitchell & Shaun P. Vahey, 2008. "Combining forecast densities from VARs with uncertain instabilities," Working Paper 2008/01, Norges Bank.
  • Handle: RePEc:bno:worpap:2008_01
    as

    Download full text from publisher

    File URL: http://www.norges-bank.no/en/Published/Papers/Working-Papers/2008/WP-20081/
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Todd E. Clark & Michael W. McCracken, 2010. "Averaging forecasts from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 5-29.
    2. Cees Diks & Valentyn Panchenko & Dick van Dijk, 2008. "Partial Likelihood-Based Scoring Rules for Evaluating Density Forecasts in Tails," Tinbergen Institute Discussion Papers 08-050/4, Tinbergen Institute.
    3. Corradi, Valentina & Fernandez, Andres & Swanson, Norman R., 2009. "Information in the Revision Process of Real-Time Datasets," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 455-467.
    4. Andersson, Michael K & Karlsson, Sune, 2007. "Bayesian forecast combination for VAR models," Working Paper Series 216, Sveriges Riksbank (Central Bank of Sweden).
    5. Anne Sofie Jore & James Mitchell & Shaun P. Vahey, 2010. "Combining forecast densities from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 621-634.
    6. Stark, Tom & Croushore, Dean, 2002. "Forecasting with a real-time data set for macroeconomists," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 507-531, December.
    7. Berkowitz, Jeremy, 2001. "Testing Density Forecasts, with Applications to Risk Management," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 465-474, October.
    8. Anthony Garratt & Gary Koop & ShaunP. Vahey, 2008. "Forecasting Substantial Data Revisions in the Presence of Model Uncertainty," Economic Journal, Royal Economic Society, vol. 118(530), pages 1128-1144, July.
    9. Wallis, Kenneth F., 2003. "Chi-squared tests of interval and density forecasts, and the Bank of England's fan charts," International Journal of Forecasting, Elsevier, vol. 19(2), pages 165-175.
    10. Croushore, Dean & Stark, Tom, 2001. "A real-time data set for macroeconomists," Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
    11. Robert L. Winkler, 1981. "Combining Probability Distributions from Dependent Information Sources," Management Science, INFORMS, vol. 27(4), pages 479-488, April.
    12. Jana Eklund & Sune Karlsson, 2007. "Forecast Combination and Model Averaging Using Predictive Measures," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 329-363.
    13. Geweke, John & Whiteman, Charles, 2006. "Bayesian Forecasting," Handbook of Economic Forecasting, Elsevier.
    14. Michael P. Clements, 2004. "Evaluating the Bank of England Density Forecasts of Inflation," Economic Journal, Royal Economic Society, vol. 114(498), pages 844-866, October.
    15. repec:nsr:niesrd:303 is not listed on IDEAS
    16. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    17. Capistrán, Carlos & Timmermann, Allan, 2009. "Forecast Combination With Entry and Exit of Experts," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 428-440.
    18. Peter A. Morris, 1977. "Combining Expert Judgments: A Bayesian Approach," Management Science, INFORMS, vol. 23(7), pages 679-693, March.
    19. Hall, Stephen G. & Mitchell, James, 2007. "Combining density forecasts," International Journal of Forecasting, Elsevier, vol. 23(1), pages 1-13.
    20. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-883, November.
    21. Clark, Todd E. & McCracken, Michael W., 2009. "Tests of Equal Predictive Ability With Real-Time Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 441-454.
    22. Garratt, Anthony & Koop, Gary & Mise, Emi & Vahey, Shaun P., 2009. "Real-Time Prediction With U.K. Monetary Aggregates in the Presence of Model Uncertainty," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 480-491.
    23. Amisano, Gianni & Giacomini, Raffaella, 2007. "Comparing Density Forecasts via Weighted Likelihood Ratio Tests," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 177-190, April.
    24. Kenneth F. Wallis, 2005. "Combining Density and Interval Forecasts: A Modest Proposal," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 983-994, December.
    25. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, Elsevier.
    26. Peter A. Morris, 1974. "Decision Analysis Expert Use," Management Science, INFORMS, vol. 20(9), pages 1233-1241, May.
    27. Valentina Corradi & Norman Swanson, 2006. "Predictive Density Evaluation. Revised," Departmental Working Papers 200621, Rutgers University, Department of Economics.
    28. Geweke, John & Amisano, Gianni, 2011. "Optimal prediction pools," Journal of Econometrics, Elsevier, vol. 164(1), pages 130-141, September.
    29. Pesaran, M. Hashem & Timmermann, Allan, 2007. "Selection of estimation window in the presence of breaks," Journal of Econometrics, Elsevier, vol. 137(1), pages 134-161, March.
    30. Dr. James Mitchell, 2005. "Evaluating, comparing and combining density forecasts using the KLIC with an application to the Bank of England and NIESR ÔfanÕ charts of inflation," National Institute of Economic and Social Research (NIESR) Discussion Papers 253, National Institute of Economic and Social Research.
    31. James Mitchell & Stephen G. Hall, 2005. "Evaluating, Comparing and Combining Density Forecasts Using the KLIC with an Application to the Bank of England and NIESR 'Fan' Charts of Inflation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 995-1033, December.
    32. Corradi, Valentina & Swanson, Norman R., 2006. "Predictive Density Evaluation," Handbook of Economic Forecasting, Elsevier.
    33. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
    34. Dr. James Mitchell, 2007. "Constructing bivariate density forecasts of inflation and output growth using copulae: modelling dependence using the Survey of Professional Forecasters," National Institute of Economic and Social Research (NIESR) Discussion Papers 297, National Institute of Economic and Social Research.
    35. repec:nsr:niesrd:320 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Density forecasts; Uncertainty; Combining forecasts; Evaluating forcasts; VAR models;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • F53 - International Economics - - International Relations, National Security, and International Political Economy - - - International Agreements and Observance; International Organizations
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bno:worpap:2008_01. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: () or (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/nbgovno.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.