IDEAS home Printed from https://ideas.repec.org/a/eee/jmacro/v24y2002i4p507-531.html
   My bibliography  Save this article

Forecasting with a real-time data set for macroeconomists

Author

Listed:
  • Stark, Tom
  • Croushore, Dean

Abstract

This paper discusses how forecasts are affected by the use of real-time data rather than latest-available data. The key issue is this: In the literature on developing forecasting models, new models are put together based on the results they yield using the data set available to the model?s developer. But those are not the data that were available to a forecaster in real time. How much difference does the vintage of the data make for such forecasts? The authors explore this issue with a variety of exercises designed to answer this question. In particular, they find that the use of real-time data matters for some forecasting issues but not for others. It matters for choosing lag length in a univariate context. Preliminary evidence suggests that the span?or number?of forecast observations used to evaluate models may also be critical: the authors find that standard measures of forecast accuracy can be vintage-sensitive when constructed on the short spans (five years of quarterly data) of data sometimes used by researchers for forecast evaluation. The differences between using real-time and latest-available data may depend on what is being used as the ?actual? or realization, and we explore several alternatives that can be used. Perhaps of most importance, we show that measures of forecast error, such as root-mean-squared error and mean absolute error, can be deceptively lower when using latest-available data rather than real-time data. Thus, for purposes such as modeling expectations or evaluating forecast errors of survey data, the use of latest-available data is questionable; comparisons between the forecasts generated from new models and benchmark forecasts, generated in real time, should be based on real-time data.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Stark, Tom & Croushore, Dean, 2002. "Forecasting with a real-time data set for macroeconomists," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 507-531, December.
  • Handle: RePEc:eee:jmacro:v:24:y:2002:i:4:p:507-531
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0164-0704(02)00062-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Swanson Norman, 1996. "Forecasting Using First-Available Versus Fully Revised Economic Time-Series Data," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 1(1), pages 1-20, April.
    2. Evan F. Koenig & Sheila Dolmas & Jeremy Piger, 2003. "The Use and Abuse of Real-Time Data in Economic Forecasting," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 618-628, August.
    3. John C. Robertson & Ellis W. Tallman, 1998. "Data vintages and measuring forecast model performance," Economic Review, Federal Reserve Bank of Atlanta, vol. 83(Q 4), pages 4-20.
    4. Stark, Tom & Croushore, Dean, 2002. "Forecasting with a real-time data set for macroeconomists," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 507-531, December.
    5. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
    6. Croushore, Dean & Stark, Tom, 2001. "A real-time data set for macroeconomists," Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
    7. Dean Croushore & Tom Stark, 2003. "A Real-Time Data Set for Macroeconomists: Does the Data Vintage Matter?," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 605-617, August.
    8. Howrey, E Philip, 1978. "The Use of Preliminary Data in Econometric Forecasting," The Review of Economics and Statistics, MIT Press, vol. 60(2), pages 193-200, May.
    9. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    10. Norman R. Swanson & Halbert White, 1997. "A Model Selection Approach To Real-Time Macroeconomic Forecasting Using Linear Models And Artificial Neural Networks," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 540-550, November.
    11. Rosanne Cole, 1969. "Data Errors and Forecasting Accuracy," NBER Chapters, in: Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance, pages 47-82, National Bureau of Economic Research, Inc.
    12. Sheila Dolmas & Evan F. Koenig, 1997. "Real-time GDP Growth Forecasts," Working Papers 9710, Federal Reserve Bank of Dallas.
    13. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    14. Tom Stark, 1998. "A Bayesian vector error corrections model of the U.S. economy," Working Papers 98-12, Federal Reserve Bank of Philadelphia.
    15. Dean Croushore & Tom Stark, 1999. "Does data vintage matter for forecasting?," Working Papers 99-15, Federal Reserve Bank of Philadelphia.
    16. Granger, Clive W. J. & King, Maxwell L. & White, Halbert, 1995. "Comments on testing economic theories and the use of model selection criteria," Journal of Econometrics, Elsevier, vol. 67(1), pages 173-187, May.
    17. Francis X. Diebold & Glenn D. Rudebusch, 1989. "Forecasting output with the composite leading index: an ex ante analysis," Finance and Economics Discussion Series 90, Board of Governors of the Federal Reserve System (U.S.).
    18. Litterman, Robert, 1986. "Forecasting with Bayesian vector autoregressions -- Five years of experience : Robert B. Litterman, Journal of Business and Economic Statistics 4 (1986) 25-38," International Journal of Forecasting, Elsevier, vol. 2(4), pages 497-498.
    19. Trivellato, Ugo & Rettore, Enrico, 1986. "Preliminary Data Errors and Their Impact on the Forecast Error of Simultaneous-Equations Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(4), pages 445-453, October.
    20. Stephen K. McNees, 1992. "How large are economic forecast errors?," New England Economic Review, Federal Reserve Bank of Boston, issue Jul, pages 25-42.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Croushore, Dean & Stark, Tom, 2001. "A real-time data set for macroeconomists," Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
    2. Dean Croushore & Tom Stark, 2000. "A real-time data set for macroeconomists: does data vintage matter for forecasting?," Working Papers 00-6, Federal Reserve Bank of Philadelphia.
    3. Dean Croushore, 2011. "Frontiers of Real-Time Data Analysis," Journal of Economic Literature, American Economic Association, vol. 49(1), pages 72-100, March.
    4. Dean Croushore & Tom Stark, 1999. "Does data vintage matter for forecasting?," Working Papers 99-15, Federal Reserve Bank of Philadelphia.
    5. Tom Stark, 2000. "Does current-quarter information improve quarterly forecasts for the U.S. economy?," Working Papers 00-2, Federal Reserve Bank of Philadelphia.
    6. Hui Feng, 2005. "Real-Time or Current Vintage: Does the Type of Data Matter for Forecasting and Model Selection?," Econometrics Working Papers 0515, Department of Economics, University of Victoria.
    7. Croushore, D., 2002. "Comments on 'The state of macroeconomic forecasting'," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 483-489, December.
    8. Clark, Todd E. & McCracken, Michael W., 2009. "Tests of Equal Predictive Ability With Real-Time Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 441-454.
    9. Dean Croushore & Tom Stark, 2002. "Is macroeconomic research robust to alternative data sets?," Working Papers 02-3, Federal Reserve Bank of Philadelphia.
    10. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.
    11. Harrison, Richard & Kapetanios, George & Yates, Tony, 2005. "Forecasting with measurement errors in dynamic models," International Journal of Forecasting, Elsevier, vol. 21(3), pages 595-607.
    12. Clements, Michael P. & Beatriz Galvao, Ana, 2010. "Real-time Forecasting of Inflation and Output Growth in the Presence of Data Revisions," Economic Research Papers 270771, University of Warwick - Department of Economics.
    13. Parigi, Giuseppe & Golinelli, Roberto, 2005. "Short-Run Italian GDP Forecasting and Real-Time Data," CEPR Discussion Papers 5302, C.E.P.R. Discussion Papers.
    14. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2016. "Common Drifting Volatility in Large Bayesian VARs," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 375-390, July.
    15. Clark, Todd & McCracken, Michael, 2013. "Advances in Forecast Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1107-1201, Elsevier.
    16. Denis Shibitov & Mariam Mamedli, 2021. "Forecasting Russian Cpi With Data Vintages And Machine Learning Techniques," Bank of Russia Working Paper Series wps70, Bank of Russia.
    17. Bekiros Stelios & Paccagnini Alessia, 2015. "Estimating point and density forecasts for the US economy with a factor-augmented vector autoregressive DSGE model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(2), pages 107-136, April.
    18. Clements, Michael P. & Galvao, Ana Beatriz, 2006. "Macroeconomic Forecasting with Mixed Frequency Data: Forecasting US output growth and inflation," Economic Research Papers 269743, University of Warwick - Department of Economics.
    19. Dimitrios P. Louzis, 2019. "Steady‐state modeling and macroeconomic forecasting quality," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(2), pages 285-314, March.
    20. Rubaszek, Michal & Skrzypczynski, Pawel, 2008. "On the forecasting performance of a small-scale DSGE model," International Journal of Forecasting, Elsevier, vol. 24(3), pages 498-512.

    More about this item

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmacro:v:24:y:2002:i:4:p:507-531. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622617 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.