IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v161y2011i2p101-109.html
   My bibliography  Save this article

Modeling data revisions: Measurement error and dynamics of "true" values

Author

Listed:
  • Jacobs, Jan P.A.M.
  • van Norden, Simon

Abstract

Policy makers must base their decisions on preliminary and partially revised data of varying reliability. Realistic modeling of data revisions is required to guide decision makers in their assessment of current and future conditions. This paper provides a new framework with which to model data revisions. Recent empirical work suggests that measurement errors typically have much more complex dynamics than existing models of data revisions allow. This paper describes a state-space model that allows for richer dynamics in these measurement errors, including the noise, news and spillover effects documented in this literature. We also show how to relax the common assumption that "true" values are observed after a few revisions. The result is a unified and flexible framework that allows for more realistic data revision properties, and allows the use of standard methods for optimal real-time estimation of trends and cycles. We illustrate the application of this framework with real-time data on US real output growth.

Suggested Citation

  • Jacobs, Jan P.A.M. & van Norden, Simon, 2011. "Modeling data revisions: Measurement error and dynamics of "true" values," Journal of Econometrics, Elsevier, vol. 161(2), pages 101-109, April.
  • Handle: RePEc:eee:econom:v:161:y:2011:i:2:p:101-109
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4076(10)00252-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maravall, Agustin & Pierce, David A, 1986. "The Transmission of Data Noise into Policy Noise in U.S. Monetary Control," Econometrica, Econometric Society, vol. 54(4), pages 961-979, July.
    2. Jacob A. Mincer & Victor Zarnowitz, 1969. "The Evaluation of Economic Forecasts," NBER Chapters, in: Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance, pages 3-46, National Bureau of Economic Research, Inc.
    3. S. Boragan Aruoba, 2008. "Data Revisions Are Not Well Behaved," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 40(2-3), pages 319-340, March.
    4. Athanasios Orphanides & Simon van Norden, 2002. "The Unreliability of Output-Gap Estimates in Real Time," The Review of Economics and Statistics, MIT Press, vol. 84(4), pages 569-583, November.
    5. Boschen, John F. & Grossman, Herschel I., 1982. "Tests of equilibrium macroeconomics using contemporaneous monetary data," Journal of Monetary Economics, Elsevier, vol. 10(3), pages 309-333.
    6. Croushore, Dean & Stark, Tom, 2001. "A real-time data set for macroeconomists," Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
    7. Patterson, K. D., 1995. "Forecasting the final vintage of real personal disposable income: A state space approach," International Journal of Forecasting, Elsevier, vol. 11(3), pages 395-405, September.
    8. Fabio Busetti, 2006. "Preliminary data and econometric forecasting: an application with the Bank of Italy Quarterly Model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(1), pages 1-23.
    9. Pieter Otter, 1986. "Dynamic structural systems under indirect observation: identifiability and estimation aspects from a system theoretic perspective," Psychometrika, Springer;The Psychometric Society, vol. 51(3), pages 415-428, September.
    10. Patterson, Kerry, 2002. "The Data Measurement Process for UK GNP: Stochastic Trends, Long Memory, and Unit Roots," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 21(4), pages 245-264, July.
    11. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    12. Thomas Laubach, 2001. "Measuring The NAIRU: Evidence From Seven Economies," The Review of Economics and Statistics, MIT Press, vol. 83(2), pages 218-231, May.
    13. Swanson, Norman R. & van Dijk, Dick, 2006. "Are Statistical Reporting Agencies Getting It Right? Data Rationality and Business Cycle Asymmetry," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 24-42, January.
    14. N. Kundan Kishor & Evan F. Koenig, 2009. "VAR Estimation and Forecasting When Data Are Subject to Revision," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(2), pages 181-190, July.
    15. George Kapetanios & Tony Yates, 2010. "Estimating time variation in measurement error from data revisions: an application to backcasting and forecasting in dynamic models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(5), pages 869-893.
    16. Stark, Tom & Croushore, Dean, 2002. "Forecasting with a real-time data set for macroeconomists," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 507-531, December.
    17. Harvey, A C & Jaeger, A, 1993. "Detrending, Stylized Facts and the Business Cycle," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(3), pages 231-247, July-Sept.
    18. Anthony Garratt & Kevin Lee & Emi Mise & Kalvinder Shields, 2008. "Real-Time Representations of the Output Gap," The Review of Economics and Statistics, MIT Press, vol. 90(4), pages 792-804, November.
    19. Croushore, Dean, 2006. "Forecasting with Real-Time Macroeconomic Data," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 17, pages 961-982, Elsevier.
    20. Patterson, K. D., 1994. "A state space model for reducing the uncertainty associated with preliminary vintages of data with an application to aggregate consumption," Economics Letters, Elsevier, vol. 46(3), pages 215-222, November.
    21. Faust, Jon & Rogers, John H & Wright, Jonathan H, 2005. "News and Noise in G-7 GDP Announcements," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 403-419, June.
    22. Patterson, K. D., 2003. "Exploiting information in vintages of time-series data," International Journal of Forecasting, Elsevier, vol. 19(2), pages 177-197.
    23. K. D. Patterson, 2002. "Modelling the data measurement process for the index of production," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 165(2), pages 279-296, June.
    24. Trivellato, Ugo & Rettore, Enrico, 1986. "Preliminary Data Errors and Their Impact on the Forecast Error of Simultaneous-Equations Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(4), pages 445-453, October.
    25. Burmeister, Edwin & Wall, Kent D & Hamilton, James D, 1986. "Estimation of Unobserved Expected Monthly Inflation Using Kalman Filtering," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(2), pages 147-160, April.
    26. Hannan, E J, 1971. "The Identification Problem for Multiple Equation Systems with Moving Average Errors," Econometrica, Econometric Society, vol. 39(5), pages 751-765, September.
    27. Knut Anton Mork, 1990. "Forecastable Money-Growth Revisions: A Closer Look at the Data," Canadian Journal of Economics, Canadian Economics Association, vol. 23(3), pages 593-616, August.
    28. Anthony Garratt & Shaun P Vahey, 2006. "UK Real-Time Macro Data Characteristics," Economic Journal, Royal Economic Society, vol. 116(509), pages 119-135, February.
    29. N. Gregory Mankiw & Matthew D. Shapiro, 1986. "News or Noise? An Analysis of GNP Revisions," NBER Working Papers 1939, National Bureau of Economic Research, Inc.
    30. Hannan, E J, 1976. "The Identification and Parameterization of ARMAX and State Space Forms," Econometrica, Econometric Society, vol. 44(4), pages 713-723, July.
    31. Howrey, E Philip, 1978. "The Use of Preliminary Data in Econometric Forecasting," The Review of Economics and Statistics, MIT Press, vol. 60(2), pages 193-200, May.
    32. Patterson, Kerry D & Heravi, Saeed M, 1991. "Data Revisions and the Expenditure Components of GDP," Economic Journal, Royal Economic Society, vol. 101(407), pages 887-901, July.
    33. Rosanne Cole, 1969. "Data Errors and Forecasting Accuracy," NBER Chapters, in: Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance, pages 47-82, National Bureau of Economic Research, Inc.
    34. Rünstler, Gerhard, 2002. "The information content of real-time output gap estimates, an application to the euro area," Working Paper Series 182, European Central Bank.
    35. Richard McKenzie, 2006. "Undertaking Revisions and Real-Time Data Analysis using the OECD Main Economic Indicators Original Release Data and Revisions Database," OECD Statistics Working Papers 2006/2, OECD Publishing.
    36. de Jong, Piet, 1987. "Rational Economic Data Revisions," Journal of Business & Economic Statistics, American Statistical Association, vol. 5(4), pages 539-548, October.
    37. Howrey, E Philip, 1984. "Data Revision, Reconstruction, and Prediction: An Application to Inventory Investment," The Review of Economics and Statistics, MIT Press, vol. 66(3), pages 386-393, August.
    38. Patterson, K. D. & Heravi, S. M., 1991. "Are different vintages of data on the components of GDP co-integrated? : Some evidence for the United Kingdom," Economics Letters, Elsevier, vol. 35(4), pages 409-413, April.
    39. Patterson, K. D., 2000. "Which vintage of data to use when there are multiple vintages of data?: Cointegration, weak exogeneity and common factors," Economics Letters, Elsevier, vol. 69(2), pages 115-121, November.
    40. Patterson, K D & Heravi, S M, 1992. "Efficient Forecasts or Measurement Errors? Some Evidence for Revisions to United Kingdom GDP Growth Rates," The Manchester School of Economic & Social Studies, University of Manchester, vol. 60(3), pages 249-263, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dean Croushore, 2011. "Frontiers of Real-Time Data Analysis," Journal of Economic Literature, American Economic Association, vol. 49(1), pages 72-100, March.
    2. Hecq, Alain & Jacobs, Jan P.A.M. & Stamatogiannis, Michalis P., 2019. "Testing for news and noise in non-stationary time series subject to multiple historical revisions," Journal of Macroeconomics, Elsevier, vol. 60(C), pages 396-407.
    3. Thomas A. Knetsch & Hans‐Eggert Reimers, 2009. "Dealing with Benchmark Revisions in Real‐Time Data: The Case of German Production and Orders Statistics," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(2), pages 209-235, April.
    4. Valentina Raponi & Cecilia Frale, 2014. "Revisions in official data and forecasting," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(3), pages 451-472, August.
    5. Dean Croushore, 2019. "Revisions to PCE Inflation Measures: Implications for Monetary Policy," International Journal of Central Banking, International Journal of Central Banking, vol. 15(4), pages 241-265, October.
    6. Francisco Castro & Javier J. P√Ârez & Marta Rodr√Çguez-Vives, 2013. "Fiscal Data Revisions in Europe," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 45(6), pages 1187-1209, September.
    7. Harrison, Richard & Kapetanios, George & Yates, Tony, 2005. "Forecasting with measurement errors in dynamic models," International Journal of Forecasting, Elsevier, vol. 21(3), pages 595-607.
    8. Clements, Michael P. & Beatriz Galvao, Ana, 2010. "Real-time Forecasting of Inflation and Output Growth in the Presence of Data Revisions," Economic Research Papers 270771, University of Warwick - Department of Economics.
    9. Fabio Busetti, 2006. "Preliminary data and econometric forecasting: an application with the Bank of Italy Quarterly Model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(1), pages 1-23.
    10. Michael P. Clements, 2017. "Assessing Macro Uncertainty in Real-Time When Data Are Subject To Revision," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(3), pages 420-433, July.
    11. Bouwman, Kees E. & Jacobs, Jan P.A.M., 2011. "Forecasting with real-time macroeconomic data: The ragged-edge problem and revisions," Journal of Macroeconomics, Elsevier, vol. 33(4), pages 784-792.
    12. Carlo Altavilla & Matteo Ciccarelli, 2011. "Monetary Policy Analysis in Real-Time. Vintage combination from a real-time dataset," CSEF Working Papers 274, Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy.
    13. Emilia Tomczyk, 2013. "End of sample vs. real time data: perspectives for analysis of expectations," Working Papers 68, Department of Applied Econometrics, Warsaw School of Economics.
    14. Carlo Altavilla & Matteo Ciccarelli, 2011. "Monetary Policy Analysis in Real-Time. Vintage Combination from a Real-Time Dataset," CESifo Working Paper Series 3372, CESifo.
    15. Richard G. Anderson & Charles S. Gascon, 2009. "Estimating U.S. output growth with vintage data in a state-space framework," Review, Federal Reserve Bank of St. Louis, vol. 91(Jul), pages 349-370.
    16. Jan Jacobs & Jan-Egbert Sturm, 2007. "A real-time analysis of the Swiss trade account," Money Macro and Finance (MMF) Research Group Conference 2006 167, Money Macro and Finance Research Group.
    17. Jennifer Castle & David Hendry, 2012. "Forecasting by factors, by variables, or both?," Economics Series Working Papers 600, University of Oxford, Department of Economics.
    18. Golinelli, Roberto & Parigi, Giuseppe, 2005. "Short-Run Italian GDP Forecasting and Real-Time Data," CEPR Discussion Papers 5302, C.E.P.R. Discussion Papers.
    19. Sinclair, Tara M. & Stekler, H.O., 2013. "Examining the quality of early GDP component estimates," International Journal of Forecasting, Elsevier, vol. 29(4), pages 736-750.
    20. Croushore, Dean & Stark, Tom, 2001. "A real-time data set for macroeconomists," Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.

    More about this item

    Keywords

    Real-time analysis Data revisions;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:161:y:2011:i:2:p:101-109. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/locate/jeconom .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nithya Sathishkumar (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.