IDEAS home Printed from https://ideas.repec.org/a/jae/japmet/v25y2010i5p869-893.html
   My bibliography  Save this article

Estimating time variation in measurement error from data revisions: an application to backcasting and forecasting in dynamic models

Author

Listed:
  • George Kapetanios

    (Queen Mary, University of London, London, UK)

  • Tony Yates

    (Bank of England, London, UK)

Abstract

Over time, economic statistics are refined. This implies that data measuring recent economic events are typically less reliable than older data. Such time variation in measurement error affects optimal forecasts. Measurement error, and its time variation, are of course unobserved. Our contribution is to show how estimates of these can be recovered from the variance of revisions to data using a behavioural model of the statistics agency. We illustrate the gains in forecasting performance from exploiting these estimates using a real-time dataset on UK aggregate expenditure data. Copyright © 2009 John Wiley & Sons, Ltd.

Suggested Citation

  • George Kapetanios & Tony Yates, 2010. "Estimating time variation in measurement error from data revisions: an application to backcasting and forecasting in dynamic models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(5), pages 869-893.
  • Handle: RePEc:jae:japmet:v:25:y:2010:i:5:p:869-893
    DOI: 10.1002/jae.1121
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/jae.1121
    File Function: Link to full text; subscription required
    Download Restriction: no

    File URL: http://qed.econ.queensu.ca:80/jae/2010-v25.5/
    File Function: Supporting data files and programs
    Download Restriction: no

    References listed on IDEAS

    as
    1. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008. "Nowcasting: The real-time informational content of macroeconomic data," Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
    2. Athanasios Orphanides & Simon van Norden, 2002. "The Unreliability of Output-Gap Estimates in Real Time," The Review of Economics and Statistics, MIT Press, vol. 84(4), pages 569-583, November.
    3. Eric T. Swanson, 2000. "On signal extraction and non-certainty-equivalence in optimal monetary policy rules," Proceedings, Federal Reserve Bank of San Francisco.
    4. Svensson, Lars E. O. & Woodford, Michael, 2003. "Indicator variables for optimal policy," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 691-720, April.
    5. Alastair Cunningham & Jana Eklund & Chris Jeffery & George Kapetanios & Vincent Labhard, 2009. "A State Space Approach to Extracting the Signal From Uncertain Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(2), pages 173-180, March.
    6. Altonji, Joseph G & Segal, Lewis M, 1996. "Small-Sample Bias in GMM Estimation of Covariance Structures," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 353-366, July.
    7. Croushore, Dean & Stark, Tom, 2001. "A real-time data set for macroeconomists," Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
    8. Coenen, Gunter & Levin, Andrew & Wieland, Volker, 2005. "Data uncertainty and the role of money as an information variable for monetary policy," European Economic Review, Elsevier, vol. 49(4), pages 975-1006, May.
    9. Aoki, Kosuke, 2003. "On the optimal monetary policy response to noisy indicators," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 501-523, April.
    10. Athanasios Orphanides, 2001. "Monetary Policy Rules Based on Real-Time Data," American Economic Review, American Economic Association, vol. 91(4), pages 964-985, September.
    11. Fabio Busetti, 2001. "The use of preliminary data in econometric forecasting: an application with the Bank of Italy Quarterly Model," Temi di discussione (Economic working papers) 437, Bank of Italy, Economic Research and International Relations Area.
    12. N. Kundan Kishor & Evan F. Koenig, 2009. "VAR Estimation and Forecasting When Data Are Subject to Revision," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(2), pages 181-190, July.
    13. Egginton, Don M. & Pick, Andreas & Vahey, Shaun P., 2002. "'Keep it real!': a real-time UK macro data set," Economics Letters, Elsevier, vol. 77(1), pages 15-20, September.
    14. Croushore, Dean, 2006. "Forecasting with Real-Time Macroeconomic Data," Handbook of Economic Forecasting, Elsevier.
    15. Harrison, Richard & Kapetanios, George & Yates, Tony, 2005. "Forecasting with measurement errors in dynamic models," International Journal of Forecasting, Elsevier, vol. 21(3), pages 595-607.
    16. Clark, Todd E, 1996. "Small-Sample Properties of Estimators of Nonlinear Models of Covariance Structure," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 367-373, July.
    17. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2005. "Nowcasting GDP and Inflation: The Real Time Informational Content of Macroeconomic Data Releases," CEPR Discussion Papers 5178, C.E.P.R. Discussion Papers.
    18. Kamada, Koichiro, 2005. "Real-time estimation of the output gap in Japan and its usefulness for inflation forecasting and policymaking," The North American Journal of Economics and Finance, Elsevier, vol. 16(3), pages 309-332, December.
    19. Bernhardsen, Tom & Eitrheim, Oyvind & Jore, Anne Sofie & Roisland, Oistein, 2005. "Real-time data for Norway: Challenges for monetary policy," The North American Journal of Economics and Finance, Elsevier, vol. 16(3), pages 333-349, December.
    20. Howrey, E Philip, 1978. "The Use of Preliminary Data in Econometric Forecasting," The Review of Economics and Statistics, MIT Press, vol. 60(2), pages 193-200, May.
    21. Gerberding, Christina & Worms, Andreas & Seitz, Franz, 2004. "How the Bundesbank really conducted monetary policy: An analysis based on real-time data," Discussion Paper Series 1: Economic Studies 2004,25, Deutsche Bundesbank.
    22. Sargent, Thomas J, 1989. "Two Models of Measurements and the Investment Accelerator," Journal of Political Economy, University of Chicago Press, vol. 97(2), pages 251-287, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jacobs, Jan P.A.M. & van Norden, Simon, 2011. "Modeling data revisions: Measurement error and dynamics of "true" values," Journal of Econometrics, Elsevier, vol. 161(2), pages 101-109, April.
    2. Marek RUSNAK, 2013. "Revisions to the Czech National Accounts: Properties and Predictability," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 63(3), pages 244-261, July.
    3. Valentina Raponi & Cecilia Frale, 2014. "Revisions in official data and forecasting," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(3), pages 451-472, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jae:japmet:v:25:y:2010:i:5:p:869-893. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://www.interscience.wiley.com/jpages/0883-7252/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.