IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v30y2009i2p173-180.html
   My bibliography  Save this article

A State Space Approach to Extracting the Signal From Uncertain Data

Author

Listed:
  • Alastair Cunningham
  • Jana Eklund
  • Chris Jeffery
  • George Kapetanios
  • Vincent Labhard

Abstract

Most macroeconomic data are uncertain—they are estimates rather than perfect measures of underlying economic variables. One symptom of that uncertainty is the propensity of statistical agencies to revise their estimates in the light of new information or methodological advances. This paper sets out an approach for extracting the signal from uncertain data. It describes a two-step estimation procedure in which the history of past revisions is first used to estimate the parameters of a measurement equation describing the official published estimates. These parameters are then imposed in a maximum likelihood estimation of a state space model for the macroeconomic variable.

Suggested Citation

  • Alastair Cunningham & Jana Eklund & Chris Jeffery & George Kapetanios & Vincent Labhard, 2009. "A State Space Approach to Extracting the Signal From Uncertain Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(2), pages 173-180, March.
  • Handle: RePEc:taf:jnlbes:v:30:y:2009:i:2:p:173-180
    DOI: 10.1198/jbes.2009.08171
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1198/jbes.2009.08171
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Donald, Stephen G & Newey, Whitney K, 2001. "Choosing the Number of Instruments," Econometrica, Econometric Society, vol. 69(5), pages 1161-1191, September.
    2. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    3. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    4. Anthony Garratt & Kevin Lee & Emi Mise & Kalvinder Shields, 2008. "Real-Time Representations of the Output Gap," The Review of Economics and Statistics, MIT Press, vol. 90(4), pages 792-804, November.
    5. Harrison, Richard & Kapetanios, George & Yates, Tony, 2005. "Forecasting with measurement errors in dynamic models," International Journal of Forecasting, Elsevier, vol. 21(3), pages 595-607.
    6. Patterson, K. D., 1994. "A state space model for reducing the uncertainty associated with preliminary vintages of data with an application to aggregate consumption," Economics Letters, Elsevier, vol. 46(3), pages 215-222, November.
    7. Cameron,A. Colin & Trivedi,Pravin K., 2005. "Microeconometrics," Cambridge Books, Cambridge University Press, number 9780521848053, August.
    8. George Kapetanios & Tony Yates, 2004. "Estimating Time-Variation in Measurement Error from Data Revisions: An Application to Forecasting in Dynamic Models," Working Papers 520, Queen Mary University of London, School of Economics and Finance.
    9. Anthony Garratt & Shaun P Vahey, 2006. "UK Real-Time Macro Data Characteristics," Economic Journal, Royal Economic Society, vol. 116(509), pages 119-135, February.
    10. N. Gregory Mankiw & Matthew D. Shapiro, 1986. "News or Noise? An Analysis of GNP Revisions," NBER Working Papers 1939, National Bureau of Economic Research, Inc.
    11. Howrey, E Philip, 1978. "The Use of Preliminary Data in Econometric Forecasting," The Review of Economics and Statistics, MIT Press, vol. 60(2), pages 193-200, May.
    12. Jan Jacobs & Jan-Egbert Sturm, 2007. "A real-time analysis of the Swiss trade account," Money Macro and Finance (MMF) Research Group Conference 2006 167, Money Macro and Finance Research Group.
    13. Jacobs, Jan P.A.M. & van Norden, Simon, 2011. "Modeling data revisions: Measurement error and dynamics of "true" values," Journal of Econometrics, Elsevier, vol. 161(2), pages 101-109, April.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:30:y:2009:i:2:p:173-180. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/UBES20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.